مراجعة في ضرورات وتحديات، التحليل الدلالي للبيانات الحكومية الموزعة
الملخص
في هذه الورقة، نقدم مراجعة لضرورة تحليل البيانات الحكومية والتحديات التي تواجهها سواءً على الصعيد المحلي أو الدولي، استخدمنا في ذلك، مقالات راجعها النظراء، تقارير من منظمات دولية، معلومات مباشرة من موظفين حكوميين، مصادر الكترونية لمبادارات حكومية، الهدف من هذه المراجعة هو لفت انتباه اصحاب القرار إلى أهمية تحليل البيانات الحكومية، باعتباره أحد المواضيع الناشئة والضرورية لتحقيق التنمية المستدامة والحكم الرشيد، استعرضنا في المراجعة بعض الحالات التي تبين أهمية تحليل البيانات في الحوكمة والتنمية والاستجابة للمتغيرات الطارئة، ناقشنا التحديات التقنية واللوجستية، راجعنا واقع تحليل البيانات في حكومات العالم، ركزنا على واقع التجربة الوطنية، ثم انتلقنا لمراجعة افضل تقنيات الذكاء الصنعي التي يمكن مواءمتها مع تحليل البيانات الحكومية، وأخيراً، ختمنا المراجعة بعدد من التوصيات.
المراجع
2. Almahmoud, A. A. (2020, September). E-Services Integration Framework Based on SOA. In Proceedings of the 2020 12th International Conference on Information Management and Engineering (pp. 1-6).
3. Abouchabaka, J., & Bentaleb, A. (2024). The impact of Big Data on the Sustainable Development Goals water and energy. In E3S Web of Conferences (Vol. 477, p. 00062). EDP Sciences.
4. OECD (2019), The Path to Becoming a Data-Driven Public Sector, OECD Digital Government Studies, OECD Publishing, Paris, https://doi.org/10.1787/059814a7-en.
5. Duggar, D., Bang, S. M., & Tripathy, B. K. (2023). Big Data Analytics in E-Governance and Other Aspects of Society. In Encyclopedia of Data Science and Machine Learning (pp. 116-128). IGI Global.
6. Hochstetter-Diez, J., Negrier-Seguel, M., Diéguez-Rebolledo, M., Vásquez-Morales, F., & Sancho-Chavarría, L. (2023). Governance Democratic and Big Data: A Systematic Mapping Review. Sustainability, 15(16), 12630.
7. Ullrich, A. (2022). Opportunities and Challenges of Big Data and Predictive Analytics for Achieving the UN’s SDGs.
8. Sachs, J.D., Lafortune, G., Fuller, G., Drumm, E. (2023). Implementing the SDG Stimulus. Sustainable Development Report 2023. Paris.
9. Muhunzi, D., Kitambala, L., & Mashauri, H. (2023). Big Data Analytics in the Healthcare Sector: Opportunities and Challenges in Developing Countries. A Literature Review.
10. Mehta, N., & Shukla, S. (2022). Pandemic analytics: how countries are leveraging big data analytics and artificial intelligence to fight COVID-19?. SN Computer Science, 3(1), 54.
11. Kshetri, N. (2020). Artificial Intelligence in Developing Countries. IT Prof., 22(4), 63-68.
12. UN Statistical Commission. (2017). Cape Town global action plan for sustainable development data. Adopted by the UN Statistical Commission at its 48th Session.
13. Rahaman, M. M., Haque, A., & Hasan, M. F. (2021). Challenges and Opportunities of Big Data for Managing the E-Governance. International Journal of Business, Technology and Organizational Behavior (IJBTOB), 1(6), 490-499.
14. Khtira, R., Elasri, B., & Rhanoui, M. (2017, March). From data to big data: Moroccan public sector. In Proceedings of the 2nd international Conference on Big Data, Cloud and Applications (pp. 1-6).
15. UN DESA, Report of the Committee of Experts on Big Data and Data Science for Official Statistics, 53rdrd Session of the UN Statistical Commission, 1–4 March 2022,E/CN.3/2022/25.
16. Atapattu, A. M. D. S., Wattuhewa, R. M., Waidyasekara, K. G. A. S., & Dilakshan, R. (2023). Big data analytics in the Sri Lankan construction industry: an assessment of the challenges and strategies.
17. Abu Afifa, A., & Abu-Assab, S. (2023). Big Data in the Telecommunication Sector in Palestine: Challenges and Opportunities. Artificial Intelligence (AI) and Finance, 934-944.
18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
19. Sani, M. K. J. A., Zaini, M. K., Sahid, N. Z., Shaifuddin, N., Salim, T. A., & Noor, N. M. (2021). Factors influencing intent to adopt big data analytics in Malaysian government agencies. International Journal of Business and Society, 22(3), 1315-1345.
20. Alzaabi, O., Al Mahri, K., El Khatib, M., & Alkindi, N. (2023). How big data analytics supports project manager in project risk management–cases from UAE health sector. International Journal of Business Analytics and Security (IJBAS), 3(1), 11-26.
21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
22. Maslej, Fattorini, et al. (April 2024) The AI Index 2024 Annual Report, AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA.
23. Helms, J. (2015). Five examples of how federal agencies use big data. Business of Government Blog, (February 25). Retrieved from: https://www.businessofgovernment.org/blog/five-examples-how-federal-agencies-use-big-data
24. Hesse, B. W., Moser, R. P., & Riley, W. T. (2015). From big data to knowledge in the social sciences. The Annals of the American Academy of Political and Social Science, 659(1), 16-32.
25. Mockshell, J., Nielsen Ritter, T., Asante-Addo, C., Ankamah-Yeboah, I., & Wong, K. (2021). CGIAR Platform for Big Data in Agriculture-Inspire Challenge Review (2017-2020).
26. European Commission. (2020). Smart Cities. The European Union. EU Regional and Urban Development. Retrieved from: https://commission.europa.eu/eu-regional-and-urban-development/topics/cities-and-urban-development_en
27. Wang, K., Zhao, Y., Gangadhari, R. K., & Li, Z. (2021). Analyzing the adoption challenges of the Internet of things (Iot) and artificial intelligence (ai) for smart cities in china. Sustainability, 13(19), 10983.
28. Tonegawa-Kuji, R., Kanaoka, K., & Iwanaga, Y. (2023). Current status of real-world big data research in the cardiovascular field in Japan. Journal of Cardiology, 81(3), 307-315.
29. Lim, J. H., Kim, J. H., & Huh, J. H. (2023). Recent trends and proposed response strategies of international standards related to shipbuilding equipment big data integration platform. Quality & Quantity, 57(1), 863-884.
30. Li, D., Nanseki, T., Chomei, Y., & Kuang, J. (2023). A review of smart agriculture and production practices in Japanese large‐scale rice farming. Journal of the Science of Food and Agriculture, 103(4), 1609-1620.
31. Shamsuzzoha, A., Nieminen, J., Piya, S., & Rutledge, K. (2021). Smart city for sustainable environment: A comparison of participatory strategies from Helsinki, Singapore and London. Cities, 114, 103194.
32. Supriyanto, E. E., Warsono, H., & Herawati, A. R. (2021). Literature Study on the Use of Big Data and Artificial Intelligence in Policy Making in Indonesia. Administratio, 12(2), 139-153.
33. International Data Corporation (IDC). (2023). Indonesia Big Data and Analytics Software Market. Retrieved from: https://www.idc.com/getdoc.jsp?containerId=prAP50219423
34. Perera, M. C. D., & Abeygunasekera, A. W. J. C. (2021). Big data and big data analytics in external auditing: motivations and challenges. International Journal of Accounting & Business Finance, 7, 1-16.
35. Asian Development Bank (ADB), (2022). Strategy 2030 Digital Technology Directional Guide. Retrieved from: https://www.adb.org/documents/strategy-2030-digital-technology-directional-guide
36. The United Arab Emirates' Government portal, Retrieved from https://u.ae/en/about-the-uae/digital-uae.
37. Ozkaya, G., & Demirhan, A. (2023). Analysis of countries in terms of artificial intelligence technologies: PROMETHEE and GAIA method approach. Sustainability, 15(5), 4604.
38. Saudi Data & AI Authority (SDAIA), Retrieved from: https://ai.sa
39. F. Sulaimn, (2021). Digital transformation strategy in Government services in Syria, Retrieved from: https://www.unescwa.org/sites/default/files/event/materials/06-Sy-DT-strategy-MOCT.pdf
40. Alamhmoud, A. A., & Kurdy, M. B. (2024, January). A Semantic Analysis Prototype for Distributed Syrian Government Data. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 692-697). IEEE.