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Abstract: 

In this research, a system was designed and  Implemented that diagnosis 12 cases of 
cardiac arrhythmia in addition to the normal condition, where this system is consisted of a 
hardware section and a software section. The hardware section is the ECG electrical 
electrographic cardiac signal acquisition circuit. The software is the interface that analyses 
ECG signal (either from the circuit or from an external file) and then disease is diagnosed. 
The diagnosis was made using one of deep learning methods, which is the neural network 
with Long_Short term memory (LSTM), after choosing it as a better classifier. This research 
has been accomplished according to several stages. In the first stage, the signal has been 
preprocessing using Savitzky_Golay filter .In the second stage the features were extracted 
in the time and time_frequencey domains. First, in the time domain, the peaks of the ECG 
signal were determined  by applying Maximal Overlap Discrete Wavelet Transform 
(MODWT) with 5th level and sym4 wavelet transformation, from which 16 features of ECG 
signal were obtained using statistical  analysis. Second in the time_frequency domain 8 
features of ECG signal were extracted by obtaining the approximation and detail coefficients 
of ECG signal and then applying statistical  analysis of them. In the third stage, the features 
in the time domain and (time_frequency) domain were used as inputs of two same classifiers 
type. The performance of classifier depending on features in time domain was better than 
the performance of classifier depending on features in (time_frequency) domain, where the 
accuracy, Sensitivity and specificity of first classifier were respectively: 97.77%, 97.36%, 
100%, while the other classifier were 95.55%, 94.73%, 100% respectively. The classifiers 
were trained and tested with a database MIT_BIH of 118 ECG signals. 

Key words: Electro Cardio Gram(ECG), Maximal Overlap Discrete  wavelet 
transform(MODWT), Long_Short Time Memory (LSTM) 
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