

Networks

Bachelor of Science, Electrical Engineering (Communication Engineering)

Dr.-Ing. Ali Diab

Winter Semester 2010 - 2011

Faculty of Mechanical and Electrical Engineering
(Communication Engineering)

Al Baath University

Outline

- Definitions
- History of Telecommunication
- Wireless Business and Markets
- Fundamentals
- Standardizations

Definitions

Communication

- The process of conveying information
 - From a sender to a receiver via a medium
 - Communicated informations should be understandable to both the sender and the receiver
- Common language between communicated nodes is necessary
- Communication is commonly done via messages
 - Source (the sender of the message)
 - Destination (the receiver of the message)
 - Content (data carried with the message)
 - Protocol (the protocol responsible for the communicating the message)
 - Channel (via which medium the message has been sent)
 - **–**

Telecommunication System

- Is a system that enables a communication between nodes
- Consists of three basic elements
 - Transmitter
 - Takes information and converts them into signals
 - Transmission medium
 - Carries the signals
 - Receiver
 - Receives the signals and converts them back into information

Telecommunication Networks

- Telecommunication network
 - A network of telecommunication links and nodes
 - Arranged so that messages can be passed from one part of the network to another over multiple links and through various nodes
- Examples
 - Computer networks
 - The Internet
 - Public switched telephone networks
 - Second and third mobile communication networks
 - **–**

Telecommunication Networks - Classifications

- Based on the size
 - Personal Area Network (PAN), (Local Area Network) LAN,
 (Metropolitan Area Network) MAN, (Wide Area Network) WAN, etc.
- Based on the provider
 - Public vs. privat network
- Based on physical access medium
 - Wired/wireline vs. wireless networks
- Based on the structure/organization/management
 - Ad hoc vs. infrastructure-based networks
- Based on the transported information
 - Analog vs. digital

Telecommunication Networks - Examples

History of Telecommunication

Telegraphy

 Long-distance transmission of written messages without physical transport of letters (developed and patented in the United States in 1837 by Samuel F. B. Morse)

- Sent by a telegraph operator (or telegrapher) using Morse code
- The first commercially successful transatlantic telegraph cable was successfully completed on 18 July 1866
- In 1870, a telegraph cable was installed between London and Calcutta (length approx. 10.000 km)

Telephony

- Philip Reis (1834-1874)
 - Self-taught German scientist and inventor
 - Constructed the first working telephones in 1860/61 (Reis telephone)
 - First publicly demonstration of his telephones on October 26, 1861

- Alexander Graham Bell (1847-1922)
 - Eminent scientist, inventor and innovator who is widely credited with the invention of the telephone
 - Patent Number 174,465 was issued to Bell on 7 March 1876 by the U.S. Patent office

Success of Telephony

- Telegraphy was the standard technique for telecommunication
 - Telegraphy companies were against telephony
- Telephony was considered a toy (the first services offered the transport of pieces of music or poems in 1880)
- Speech quality was quite miserable in the beginning
- Communication via telephony was considered impersonal and unreliable

Wireless Telecommunication

- Father of mobile communications: Guglielmo Marconi (1874-1937)
- He was only the first scientist, who practically applies the results of other scientists like
 - Heinrich Hertz (1857-1894), who demonstrated the presence of electromagnetic waves in a lecture room at the University of Karlsruhe in 1888
 - Desiré Edouard Branly (1844-1940), who developed a receiver for radio communications
 - Augusto Righi (1850-1920), who built the sender.

Important Dates

- 1896: Guglielmo Marconi
 - First demonstration of wireless (digital) telegraphy
 - Long wave radio transmission with very high transmitting power (> 200 kW)
- 1907: commercial wireless transatlantic communication
 - Quite large base stations(30 antenna masts, which were 100 m high)
- 1915: wireless speech communication between New York and San Francisco
- 1920: discovery of short wave radio by Marconi
- 1926: telephony in trains on the track from Hamburg to Berlin
- 1958: first cellular network (A-Netz) in Germany

Birth of the Internet

- The USSR's launch of Sputnik in 1957 spurred the United States to create the Advanced Research Projects Agency, known as ARPA, in February 1958 to regain a technological lead
- Existed telecommunications networks were unreliable (star topology), proprietary, and slow
- Idea: packet switching (as opposed to circuit switching) to make a network highly robust and survivable
- 30. August 1969: Demonstration of the Internet (Connection between UCLA and Stanford Research Institute (SRI))

The First Message over the Internet

It was simply a LOGIN from the UCLA computer to the SRI computer

- We sent an "L" did you get the "L"?
 - YEP!
- We sent an "O" did you get the "O"?
 - YEP!
- We sent a "G" did you get the "G"?
 - CRASH!!

Speech vs. Data Communication

Source: Alcatel Telecommunication Review, 1998

The Evolution of the Internet

- **1970**: first "Internet": 4 Hosts
- 1971: start of the ARPAnet with 15 nodes (the first Internet backbone)
- 1974: new protocol suite: TCP/IP (Transmission Control Protocol/ Internet Protocol)
- 1988: Internet access from Germany
 - EUnet-IRB Dortmund
 - Xlink (eXtended Lokales Informatik-Netz Karlsruhe)
- 1991: EBONE: European backbone
- 1995: Sun introduces HotJava web browser and promotes the programming language Java (developed five years ago)
- 1996: University Corporation for Advanced Internet Development (Internet2)
- **2008**: As of March 31, 2008, 1.407 billion people use the Internet according to Internet World Stats

Wireless Business and Markets

State of the Wireless Data Business

Telecommunication world

- 2G Mobile Communication Systems are in place (GSM, GPRS, EDGE)
- 3G Mobile Systems (UMTS incl. HSDPA) are available
- B3G systems (LTE/SAE) are under development
- Wireless voice market is saturating
- Data traffic is growing
- Traditional Telecom Operator and infrastructure provider target the Internet market

Internet world

- Fixed Internet access is getting common (DSL)
- WLAN hot spots are installed at airports, campus areas, coffee shops, etc.
- 802.11a products are standard, 802.11n is establishing
- 802.16 (WiMAX) products are available
- 802.20 (MBWA) standards approved
- Internet Service Providers (ISP) and Internet infrastructure provider target the mobile market

Mobile Networks in Germany

Public and Community WLAN/WiFi/802.11 Systems

Future Networks/Next Generation Network (NGN)

- Packet-based network
- Provides telecommunication services and more
- Uses multiple broadband, QoS-enabled transport technologies
- Offers unrestricted access by users to different service providers
- Supports generalized mobility
- Allows consistent and ubiquitous provision of services to users
- Service-related functions are independent from underlying transport-related technologies

4G Mobile Communication Systems

Fundamentals

Communication Network – Main Components

Communication Network – Main Components

- Terminal Equipment
 - Source and/or destination of information flows
 - User interface to communication services
 - Host for applications
- Switching and Routing Equipment
 - Switching, routing of data
- Physical/transport Media
 - Links between
 - terminal equipment and switching/routing equipment and among
 - Switching/routing equipments
- International standards are essential

Communication Network – Communication Service

Telecommunication service

(voice, video streaming, email, etc.)

User interface

How Communication Can Be Realized?

Transmission Media

- Bandwidth
 - How many bits are transmitted per second
- Attenuation
 - Signal strength weakness while distrinution via the medium
- Packet error
 - The ratio of packets received with errors inside
 - Due to attenuation for example

- Distribution function
 - The relationship between the strength of the signal and the length of the medium
- Cost
 - How expensive is the medium

Types of Wired Transmission Media

- Twisted-pair cable
 - Very cheap
 - Consists of two isolated copper cables
 - Two types of twisted-pair cable are known
 - Shielded Twisted Pair (STP)
 - Used mostly in Token Ring networks
 - Not that cheap, but reliable
 - Unshielded Twisted Pair (UTP)
 - Cheaper than STP, but more sensible for attenuation

Types of Wired Transmission Media

- Coaxial cable
 - Contains two conductors
 - Consists of
 - Internal conductor
 - External conductor (shield)
 - Isolator
 - Envelop
 - Has two types
 - Thinnet
 - Thicknet

Thin coax (Thinnet)

Types of Wired Transmission Media

- Fiber-optic cable
 - The best and the most expensive
 - No attenuation
 - Negligible error rate
 - Sending rate is 100s Mega Bit per second

How Computer Networks are Constructed?

- Bus topology
 - All computers are connected to a single bus
 - Pros
 - Simple
 - Short cable to interconnect computers is adequate → cheap

- Cons
 - Slow exchange of information
 - The bus is a single point of failure → any defect in the cable destroys the network

How Computer Networks are Constructed?

- Star topology
 - All computers are connected to a central point (Hub)
 - Pros
 - Scalable
 - Integration of intelligence in the central point aids in many operations, e.g.

Cons

- The hub is a single point of failure
- Lots of cables are necessary

How Computer Networks are Constructed?

- Ring topology
 - Computers are interconnected via a ring
 - Pros

 Fairness among computers

 Cons
 - Cons
 - Each computer is a single point of failure
 - Hard management

How Computer Networks are Constructed?

- Mesh topology
 - Each computer is interconnected with anyone else in the network
 - Pros
 - Robust (inspite of defects, the network remains working)

- Cons
 - Hard management
 - Lots of cables

How Computer Networks are Constructed?

- Hirarchical topology
 - Computers are interconnected in a hierarchical manner
 - Pros
 - Simple management and control

- Cons
 - Many single point of failures

Local Area Network (LAN)

A Single Shared Cable Configuration

Local Area Network (LAN)

Local Area Network (LAN)

Transmission of Data

Transmission of Data

Transmission of Data

Wide Area Networks (WAN)

Wide Area Networks (WAN)

Standarization

Standardization Organizations

- International Standardization Organizations
 - International Organization for Standardization (ISO)
 - ISO Reference Model for Open Systems Interconnection (OSI)
 - International Telecommunication Union (ITU)
 - Telecommunication Standardization Sector, ITU-T
 - Radio communication Sector, ITU-R
 - Telecommunication Development Sector, ITU-D
 - Institute of Electrical and Electronics Engineers (IEEE)
- Regional/National Standardization Organizations
 - European Telecommunication Standards Institute (ETSI)
 - American National Standards Institute (ANSI)
 - Deutsches Institut f
 ür Normung (DIN)

Standardization Organizations

- Standardization of the Internet
 - Internet Engineering Task Force (IETF)
 - Large number of working groups and informal discussion groups
 - Working groups organized into areas, each for a subject
 - Area directors, together with the IETF Chair, form the Internet Engineering Steering Group (IESG)
- Special Interest Groups (SIGs)
 - Bluetooth-SIG
 - EcmaInternational (former European Computer Manufacturers Association)
 - The Open Group (former OSF and X/Open)
 - ZigBeeAlliance