
Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
Integrated HW/SW Systems Group

Self-Organization
23 February 2019 1

Dr.-Ing. Ali Diab
Computer Engineering and Automation Research Group

Software Engineering

Page 1

Software Engineering
-

Course Overview

Dr.-Ing. Ali Diab

Outline

• What Is Software?

• Why Is Software Engineering So Important?

• Goals

• Organizational Stuff

• How to Handle the Course

2

What Is Software?

• Software:

– The product that software professionals build and then support over
the long term

• Software encompasses

– Instructions (computer programs)

– Data structures that enable the programs to adequately store and
manipulate information

– Documentation that describes the operation and use of the programs

3

Why Is Software Engineering So Important?

• The economies of ALL developed nations are dependent on
software

• More and more systems are software controlled (transportation,
medical, telecommunications, military, industrial, entertainment,
etc.)

• Maintaining software is cost intensive  software engineering

– Software engineering is concerned with theories, methods and tools
for professional software development

4

Goals

• Provision of up-to-date knowledge concerning Software
engineering techniques

• In-depth understanding of how to solve technical problems in this
concern

• Focus on

– Software development

• Requirement, performance, methods, etc.

– Software engineering cycle

– Software management

– Service-oriented software engineering

– ...

5

Organizational Stuff

• Lecturer contact information

– Dr.-Ing. Ali Diab

– email: adiab@albaath-univ.edu.sy (Subject: Software Engineering)

• Course prerequisites

– Basics in programming

– Good basics in Mathematic

• Course budget

– 1 Lecture per week

6

How to Handle the Course

• Cover your knowledge holes

– Go through basics

• Go through the material provided

– Will be electronically provided

– References will be listed for each lecture

• If possible, electronic copy will be provided

– Search the Internet for knowledge if required

• Questions catalog will be provided

– Cover 50 – 60 % of the course

• Exam

– ?????

7

Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
Integrated HW/SW Systems Group

Self-Organization
23 February 2019 8

Dr.-Ing. Ali Diab
Computer Engineering and Automation Research Group

Software Engineering

Page 8

Software Engineering
-

Software & Software Engineering

Dr.-Ing. Ali Diab

Outline

• Introduction

• Definition & Importance

• Layered Technology

• Software Engineering Process

• Software Engineering Costs

9

Introduction

10

Software Products

• Generic products

– Stand-alone systems

• Marketed and sold to any customer who wishes to buy them

– Examples

• PC software such as editing, graphics programs, project management
tools; CAD software, etc.

• Customized products

– Software products commissioned by a specific customer to meet their
own needs

– Examples

• Embedded control systems, air traffic control software, traffic monitoring
systems, etc.

11

Why Is Software Engineering So Important?

• The economies of ALL developed nations are dependent on
software

• More and more systems are software controlled (transportation,
medical, telecommunications, military, industrial, entertainment,
etc.)

• Maintaining software is cost intensive  software engineering

– Software engineering is concerned with theories, methods and tools
for professional software development

12

Software Costs

• Software costs often dominate computer system costs

– The costs of software on a PC are often greater than the hardware
cost

• Software costs are in their majority maintaining costs rather than
developing

– For systems with a long life, maintenance costs may be several times
development costs

• Software engineering is concerned with cost-effective software
development

– Reduce development costs

– Reduce maintenance costs

– Circumstantial: the performance of software products themselves is
also improved

13

Features of Software?

• The characteristics of software products make them different from
other things human being build

• They are logical system with following features

– Software is developed or engineered

• It is not manufactured in the classical sense which has quality problem

– Software doesn't "wear out” but it deteriorates (due to a certain
change)

– Although the industry is moving toward component-based
construction (e.g. standard screws and off-the-shelf integrated
circuits), most software continues to be custom-built

• Modern reusable components encapsulate data and processing into
software parts to be reused by different programs. E.g. graphical user
interface, window, pull-down menus in library, etc.

14

Features of Software?

• Hardware has bathtub curve of failure rate (high failure rate in the
beginning, then drop to steady state, then cumulative effects of
dust, vibration, abuse occurs).

15

idealized curve

change

actual curve

Failure
rate

Time

increased failure
rate due to side effects

Wear vs. Deterioration

Software Applications

• System software

– Compilers, editors, file management utilities, etc.

• Application software

– Stand-alone programs for specific needs

• Engineering/scientific software

– Characterized by “number crunching” algorithms, such as automotive
stress analysis, molecular biology, orbital dynamics, etc.

• Embedded software

– Resides within a product or system

• Key pad control of a microwave oven, digital function of dashboard display
in a car, etc.

16

Software Applications

• Product-line software

– Focus on a limited marketplace to address mass consumer market

• Word processing, graphics, database management, etc.

• Web applications

– Network centric software

• As web 2.0 emerges, more sophisticated computing environments are
supported, integrated with remote database and business applications

• AI software uses non-numerical algorithm to solve complex
problem

– Robotics, expert system, pattern recognition game playing, etc.

17

Software - New Categories

• Open world computing

– Pervasive, ubiquitous, distributed computing due to wireless
networking

• How to allow mobile devices, personal computer, enterprise system to
communicate across vast network

• Netsourcing

– The Web as a computing engine

• How to architect simple and sophisticated applications to target end-users
worldwide

• Open source

– ”Free ” source code open to the computing community

18

Definition & Importance

19

Definition & Importance

• Definition

– Seminal definition

• The establishment and use of sound engineering principles in order to
obtain economically software that is reliable and works efficiently on real
machines

– IEEE definition

• The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.

• Importance
– More and more, individuals and societies rely on advanced software systems.

We need to be able to produce reliable and trustworthy systems economically
and quickly

– It is usually cheaper, in the long run, to use software engineering methods and
techniques for software systems rather than just write the programs as if it was
a personal programming project (The majority of costs are the costs of
changing the software after it has gone into use)

20

Terminology

21

Question Answer

What is software? Computer programs, data structures and associated
documentation. Software products may be developed for
a particular customer or may be developed for a general
market.

What are the attributes of good software? Good software should deliver the required functionality
and performance to the user and should be
maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is
concerned with all aspects of software production.

What is the difference between software
engineering and computer science?

Computer science focuses on theory and fundamentals;
software engineering is concerned with the practicalities
of developing and delivering useful software.

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects of
computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this more general process.

Terminology

22

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to meet the
changing needs of customers. This is a critical attribute because software
change is an inevitable requirement of a changing business environment.

Dependability and security Software dependability includes a range of characteristics including
reliability, security and safety. Dependable software should not cause
physical or economic damage in the event of system failure. Malicious
users should not be able to access or damage the system.

Efficiency Software should not make wasteful use of system resources such as
memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is designed.
This means that it must be understandable, usable and compatible with
other systems that they use.

What are Software Engineering Methods?

• Structured approaches to software development which include
system models, notations, rules, design advice and process
guidance

– Model descriptions

• Descriptions of graphical models which should be produced

– Rules

• Constraints applied to system models

– Recommendations

• Advice on good design practice

– Process guidance

• What activities to follow

23

What is Computer-Aided Software Engineering

• Computer-Aided Software Engineering (CASE): Software systems
intended to provide automated support for software process
activities

• CASE systems are often used for method support

• Upper-CASE

– Tools to support the early process activities of requirements and
design

• Lower-CASE

– Tools to support later activities such as programming, debugging and
testing

24

Layered Technology

25

Systems Development Life Cycle (SDLC)

Software Engineering - A Layered Technology

27

a “quality” focus

process model

methods

tools

• Any engineering approach must rest on organizational
commitment to quality which fosters a continuous process
improvement culture

Software Engineering - A Layered Technology

28

a “quality” focus

process model

methods

tools

Process layer as the foundation defines a framework with activities for
effective delivery of software engineering technology. Establish the
context where products (model, data, report, and forms) are produced,
milestone are established, quality is ensured and change is managed

Software Engineering - A Layered Technology

29

a “quality” focus

process model

methods

tools

Method provides technical how-to‘s for building software. It
encompasses many tasks including communication, requirement
analysis, design modeling, program construction, testing and support

Software Engineering - A Layered Technology

30

a “quality” focus

process model

methods

tools

Tools provide automated or semi-automated support for the process
and methods

Software Engineering Process

31

Software Process

• A set of activities whose goal is the development or evolution of
software

• Generic activities in all software processes are
– Specification

• What the system should do and its development constraints

– Development
• Production of the software system

– Validation
• Checking that the software is what the customer wants

– Evolution
• Changing the software in response to changing demands

32

What is a software process model?

• A simplified representation of a software process, presented from
a specific perspective

• Examples of process perspectives are
– Workflow perspective

• Sequence of activities

– Data-flow perspective
• Information flow

– Role/action perspective
• Who does what

• Generic process models
– Waterfall

– Iterative development

– Component-based software engineering

33

Software Engineering Costs

34

What are the Costs of Software Engineering?

• Roughly
– 60% of costs are development costs

– 40% are testing costs

– Note: for custom software, evolution costs often exceed development
costs.

• Costs vary depending on
– The type of system being developed

– The requirements of system attributes such as performance, system
reliability, etc.

• Distribution of costs depends on the development model applied

35

Activity Cost Distribution

36

Wat erfall model

It erative development

Component-based software eng ineering

Development and evolution costs for long-lifetime syst ems

System evolution

10 200 30 4000

System development

Specification Design Development Integ ration and testing

25 5 0 75 1000

Specification Development Integ ration and testing

2 5 5 0 75 1 000

Specification Iterative development System testing

2 5 5 0 75 1 000

Product Developement Cost

• The majority od costs are spent for testing and correction of
developement failures

• The developement costs cover about 35% of costs

• The specification costs cover about 5% of the costs

37

Specification Development System testing

2 5 50 7 5 1000

Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
Integrated HW/SW Systems Group

Self-Organization
23 February 2019 38

Dr.-Ing. Ali Diab
Computer Engineering and Automation Research Group

Software Engineering

Page 38

Software Engineering
-

Software Development

Dr.-Ing. Ali Diab

Outline

• Quote (Yogi Berra)

• Software Engineering Process

• Software Engineering Costs

• Software Developement Life Cycles (SDLC)

– Bug & Fix Model

– Waterfall Model

– Rapid Prototyping Model

– Incremental Model

– Extreme Programming Model

– Synchronize-and Stabilize Model

– Spiral Model

– Object-Oriented Life-Cycle Models
39

Quote

40

41

Software Engineering Process

42

Software Process

• A set of activities whose goal is the development or evolution of
software

• Generic activities in all software processes are
– Specification

• What the system should do and its development constraints

– Development
• Production of the software system

– Validation
• Checking that the software is what the customer wants

– Evolution
• Changing the software in response to changing demands

43

What is a software process model?

• A simplified representation of a software process, presented from
a specific perspective

• Examples of process perspectives are
– Workflow perspective

• Sequence of activities

– Data-flow perspective
• Information flow

– Role/action perspective
• Who does what

• Generic process models
– Waterfall

– Iterative development

– Component-based software engineering

44

Software Engineering Costs

45

What are the Costs of Software Engineering?

• Roughly
– 60% of costs are development costs

– 40% are testing costs

– Note: for custom software, evolution costs often exceed development
costs.

• Costs vary depending on
– The type of system being developed

– The requirements of system attributes such as performance, system
reliability, etc.

• Distribution of costs depends on the development model applied

46

Activity Cost Distribution

47

Wat erfall model

It erative development

Component-based software eng ineering

Development and evolution costs for long-lifetime syst ems

System evolution

10 200 30 4000

System development

Specification Design Development Integ ration and testing

25 5 0 75 1000

Specification Development Integ ration and testing

2 5 5 0 75 1 000

Specification Iterative development System testing

2 5 5 0 75 1 000

Product Developement Cost

• The majority od costs are spent for testing and correction of
developement failures

• The developement costs cover about 35% of costs

• The specification costs cover about 5% of the costs

48

Specification Development System testing

2 5 50 7 5 1000

Software Developement Life Cycles (SDLC)

49

SDLC Model

• A framework that describes the activities performed at each stage
of a software development project

– Bug & Fix Model

– Waterfall Model

– Rapid Prototyping Model

– Incremental Model

– Extreme Programming Model

– Synchronize-and Stabilize Model

– Spiral Model

– Object-Oriented Life-Cycle Models

– Dynamic Systems Development Method (DSDM)

– Adaptive Model

– Tailored Models

– ...

50

Software Developement Life Cycles (SDLC)
Build & Fix Model

51

Build & Fix Model

• Product is constructed with no specifications

52

Difficencies

• Problems

– No specifications

– No design

• Totally unsatisfactory

• Need life-cycle model

– “Game plan”

– Phases

– Milestones

• Disadvantages

– Changes are made in the later phases of software development life
cycle  high cost

– Maintenance is difficult
53

Software Developement Life Cycles (SDLC)
Waterfall Model

54

Waterfall Model

• Requirements, defines

– Needed information

– Functions & behavior

– Performance & interfaces

• Design

– Data structures

– Software architecture

– Interface representations

– Algorithmic details

• Implementation

– Source code & database

– User documentation & testing

55

Waterfall Model

56

Waterfall Model

57

Waterfall Model

58

Development Risks Elimination

• Five additional features that must be added to this basic approach
to eliminate most of the development risks

– Step 1: Program design comes first

– Step 2: Document the design

– Step 3: Do it twice

– Step 4: Plan, control and monitor testing

– Step 5: Involve the customer

59

Development Risks Elimination

• Step1

60

Development Risks Elimination

• Step 2

61

Development Risks Elimination

• Step 3

62

Development Risks Elimination

• Step 4

63

Development Risks Elimination

• Step 5

64

Strengths

• Easy to understand, easy to use

• Provides structure to inexperienced staff

• Milestones are well understood

• Sets requirements in a stable way

• Good for management control (plan, staff, track)

• Works well when quality is more important than cost or schedule

65

Deficiencies

• All requirements must be known upfront

• Deliverables created for each phase are considered frozen –
inhibits flexibility

• Can give a false impression of progress

• Does not reflect problem-solving nature of software development –
iterations of phases

• Integration is one big bang at the end

• Little opportunity for customer to preview the system (until it may
be too late)

66

When to use the Waterfall Model

• Requirements are very well known

• Product definition is stable

• Technology is understood

• New version of an existing product

• Porting an existing product to a new platform

• Whether you should use it or not depends largely on
– How well you believe you understand your customer's needs

– How much volatility you expect in those needs as the project
progresses

67

Software Developement Life Cycles (SDLC)
Rapid Prototyping Model

68

Rapid Prototyping Model

• Build a rapid prototype

• Clients and future users interact
and experiment with it

• Once clients are satisfied, the
developer can draw up
specification document

• Feedback loops are not required
in this model as the working
prototype has been validated by
the client it is reasonable to
expect that the resulting
specification document will be
correct

69

The Prototyping

• Construct the prototype as rapidly as possible

– The developers should develop the rapid prototype as rapid as
possible to speed up the software development process

• Use of rapid prototype

– Determine what the client’s real needs are

• Rapid prototype implementation is discarded

– Internal structure of rapid prototype is not relevant

– Prototype is modified rapidly to reflect client need

70

Strengths & Difficincies

• Advantages

– As compared to waterfall model

• Development of the process is linear preceding from rapid prototype to
delivered product

• Feedback loops are less likely to be (needed) in this case

• Disadvantages
– If users cannot be involved throughout the life cycle this model is not useful

– Development time may not be reduced if reusable components are not
available

– Highly specialized and skilled developers are expected and such developers
may not be available easily

– Client expects changes to made as rapidly as the rapid prototype

71

Waterfall Model Vs. Rapid Prototyping Model

• Waterfall model

– Many successes

– Client needs

• Rapid prototyping model

– Not proved

– Has own problems

• Solution

– Rapid prototyping for requirements phase

– Waterfall for rest of life cycle

72

Software Developement Life Cycles (SDLC)
Incremental Model

73

Incremental Model

• The product is designed,
implemented, integrated
and tested as a series of
incremental builds

– A build consists of code
pieces from various
modules interacting to
provide a specific
functional capability

• At each stage, a new build
is coded and then
integrated and tested as a
whole

74

Incremental Model

• Break up the target product
into builds subject

– Constraint that each build
is integrated into existing
software  the resulting
product must be testable

• If a product has too many
builds, then at each stage

– Considerable time is spent
in the integration testing of
only a small amount of
additional functionality

• If a product has too few
build, then

– The incremental model
degenerated into build
and fix model

75

Comparison to Previous Models

• In waterfall and rapid prototyping model

– Deliver to client a complete product

– There is project delivery date

• In Incremented Model

– Deliver an operational quality product at each stage

76

Strengths & Difficincies

• Advantages

– Gradual introduction of the product via this model provides time for
the client to adjust to the new product

– Change and Adoptions are natural

• Disadvantages

– Each additional build has to be incorporated into existing structure
without destroying what has been made till date

– Addition of new build should be simple and straightforward

– Incremental model does not distinguish between developing a product
and maintaining it

– Begin with a design that support entire product

– View product as a sequence of builds, each independent of next

77

Risk!!

• More risky concurrent version - pieces may not fit

78

Software Developement Life Cycles (SDLC)
Spiral Model

79

Spiral Model

• Simplified form

– Waterfall model plus risk
analysis

• Precede each phase by

– Alternatives

– Risk analysis

• Follow each phase by

– Evaluation

– Planning of next phase

80

Simplified Spiral Model

• If risks cannot be
resolved, project is
immediately terminated

• Prototypes can be
effectively used to
provide information
about certain classes of
risks

81

Full Spiral Model

• Represents cumulative cost to date and progress through the
spiral

• Each cycle of the spiral corresponds to a phase

• Phase begins by determining objectives of that phase, alternatives
for achieving those objectives, and constraints imposed on these
alternatives

• Strategy is analyzed from view point of risk

• If all risks are successfully resolved development starts

• Then the results of the phase are evaluated

82

Full Spiral Model

83

Analysis of Spiral Model

• Strengths
– Incorporation of software quality

– Easy to judge how much to test as risks for too much and too low
testing are analyzed

– No distinction between development, maintenance i.e. maintenance is
treated same way as development

• Weaknesses
– For large-scale software only. In case of contract all risk analysis

should be made before the contract is signed.

– Skilled developers are required for analyzing and detecting potential
risks

– For internal (in-house) software only

84

