
Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
Integrated HW/SW Systems Group

Self-Organization
23 February 2019 1

Dr.-Ing. Ali Diab Compilers

Page 1

Compilers
-

Course Overview

Dr.-Ing. Ali Diab

Outline

• Introduction

• Goals & Organizational Stuff

• Compilers, Interpreters, …

• Brief Introduction

• Simple One Pass Compiler

2

Goals & Organizational Stuff

3

Goals

• Provision of up-to-date knowledge concerning compilers

– Architecture

– Algorithms

– ...

• In-depth understanding of how to solve technical problems in this
concern

• Focus on

– Lexical & Semantic Analysis...

– Parsing

– Code Generation

– ...

4

Organizational Stuff

• Lecturer contact information

– Dr.-Ing. Ali Diab

– email: adiab@albaath-univ.edu.sy (Subject: Compilers)

– email: dring_alidiab@outlook.de (Subject: Compilers)

• Course prerequisites

– Basics in programming language

• High level programming language

• Assembly language

• Course budget

– 1 Lecture per week

– 1 praxis appointment per week

5

How to Handle the Course

• Cover your knowledge holes

– Go through basics

• Go through the material provided

– Will be electronically provided

– References will be listed for each lecture

• If possible, electronic copy will be provided

– Search the Internet for knowledge if required

• Questions catalog will be provided

– Cover 50 – 60 % of the course

• Exam

– ?????

6

Introduction

7

Programming Languages

• Programming language is a set of instructions and rules used to
implement blocks of software to perform certain operation

• Two types of programming languages

– Low-level languages

• Machine language: the language the CPU understads and executes

• Assemply language: the first level of coding of machine language into
readable instructions

– High level languages

• Written in languages similar to those used in nature

• Simpler and more readable than machine and assemply languages

• Need to be compiled and built

8

Machine Language

• The language the CPU understands

• Set of “1“s and “0“s

• E.g.

– 10100001 00000000 00000000 (fetch the content of the address “0”
and put them in the register AX)

– 00000101 00000100 00000000 (add 4 to AX)

– 10100011 00000000 00000000 (save the content of AX in the
memory under the address “0”)

• Writing programms in machine language is a tough task

9

Assemply Language

• The first level of coding of machine language into readable
instructions

• Write programms using

– Commands: MOV, SUB, XCHNG, etc.

– Register names: AX, BX, CX, etc.

– Memory addresses: [1000H], [2345H], etc.

– Data: A DW 2 (define a variable with the name “A“ and the value “2“)

• Programms written using assemply are faster than those written
using high-level languages

• Programms written using assemply should be converted into
programms written in machine language

– The converter is called assempler

10

High-Level Languages

• Written in languages similar to those used in nature

• Widely used and acceptable

• E.g.

– C++, Delphi, Java, C#, PHP, TCL, etc.

• Visual versions are widely used

• Programms written using high-level language should be

– Compiled to check for syntax errors

– Built to be converted into programms written assemply language and
machine language

11

High-Level Languages

12

Compile & Build of Programs

13

Compile & Build of Programs - Con

14

Compile & Build of Programs - Con

15

The program written
in assembly

Memory
content

The registers
of the CPU

The flags

The program written
in machine language

Compile & Build of Programs - Con

Wir
eles
s
16

MOV Ax, [0000H]

ADD Ax, 4

MOV [0000H], AX

Programms written using
assemply

10100001 00000000 00000000
00000101 00000100 00000000
10100011 00000000 00000000

Programms written using
assemply

Assempler

Compilers, Interpreters, …

17

What is a compiler?

• a program that translates an executable program in one
language into an executable program in another language

18

What is an interpreter?

• a program that reads an executable program and produces the
results of running that program

19

Compilers, Interpreters, …

20

Compilers, Interpreters, …

21

Brief Introduction

22

Does Compilers Evolve

• Machines are constantly changing

– Changes in architecture  changes in compilers

– New features pose new problems

– Changing costs lead to different concerns

– Old solutions need re-engineering

• Innovations in compilers should prompt changes in architecture

– New languages and features

23

Why Do We Care?

• Compiler construction is a microcosm of computer science

24

Artificial intelligence
Greedy algorithms

Learning algorithms

Algorithms

Graph algorithms

Union-find

Dynamic programming

Theory

DFAs for scanning

Parser generators

Lattice theory for analysis

Systems

Allocation and naming

Locality

Synchronization

Architecture

Pipeline management

Hierarchy management

Instruction set use

What Qualities are Important in a Compiler?

• Correct code

• Output runs fast

• Compiler runs fast

• Compile time proportional to program size

• Support for separate compilation

• Good diagnostics for syntax errors

• Works well with the debugger

• Good diagnostics for flow anomalies

• Cross-language calls

• Consistent, predictable optimization

25

Brief History

• 1952: First compiler (linker/loader) written by Grace Hopper for A-
0 programming language

26

Brief History

• 1952: First compiler (linker/loader) written by Grace Hopper for A-
0 programming language

27

Brief History

• 1957: First complete compiler for FORTRAN by John Backus and
team

28

Brief History

• 1952: First compiler (linker/loader) written by Grace Hopper for A-
0 programming language

• 1957: First complete compiler for FORTRAN by John Backus and
team

• 1960: COBOL compilers for multiple architectures

• 1962: First self-hosting compiler for LISP

29

Abstract View

• Recognize legal (and illegal) programs

• Generate correct code

• Manage storage of all variables and code

• Agree on format for object (or assembly) code

30

Big step up from assembler — higher level notations

Traditional Two Pass Compiler

• Intermediate Representation (IR)

• Front-end maps legal code into IR

• Back-end maps IR onto target machine

• Simplify retargeting

• Allows multiple front-ends

• Multiple passes  better code

31

Traditional Two Pass Compiler

32

Front-end, IR and back-end must encode knowledge needed for
all nm combinations!

Front-end

• Recognize legal code

• Report errors

• Produce IR

• Preliminary storage map

• Shape code for the back end

33

Much of front end construction can be automated

Scanner

• Map characters to tokens

• Character string value for a token is a lexeme

• Eliminate white space

34

X= X + Y  <id,x> = <id,x> + <id,y>

Parser

• Recognize context-free syntax

• Guide context-sensitive analysis

• Construct IR(s)

• Produce meaningful error messages

• Attempt error correction

35

Parser generators mechanize much of the work

Context-Free Grammars

• Context-free syntax is specified with a grammar, usually in
Backus-Naur form (BNF)

36

1. <goal> := <expr>
2. <expr> := <expr> <op> <term>
3. | <term>
4. <term> := number
5. | id
6. <op> := +
7. | -

A grammar G = (S,N,T,P)
S is the start-symbol
N is a set of non-terminal symbols
T is a set of terminal symbols
P is a set of productions — P: N  (N T)*

Parse Trees

• A parse can be
represented by a tree
called a parse or syntax
tree

37

Obviously, this contains a
lot of unnecessary
information

Abstract Syntax Trees

• So, compilers often use an abstract syntax tree (AST)

38

ASTs are often used as
an IR

Back-end

• Translate IR into target machine code

• Choose instructions for each IR operation

• Decide what to keep in registers at each point

• Ensure conformance with system interfaces

39

Automation has been less successful here

Instruction Selection

• Produce compact, fast code

• Use available addressing modes

• Pattern matching problem

– Ad hoc techniques

– Tree pattern matching

– String pattern matching

– Dynamic programming

40

Register Allocation

• Have value in a register when used

• Limited resources

• Changes instruction choices

• Can move loads and stores

• Optimal allocation is difficult

41

Modern allocators often use an analogy to graph coloring

Traditional Three-Pass Compiler

• Analyzes and changes IR

• Goal is to reduce runtime

• Must preserve values

42

Simple One-Pass Compiler

43

Introduction

• One-Pass compiler

– A compiler that passes through the parts of each compilation unit only
once

– Immediately translating each part into its final machine code

– E.g. Pascal

• Multi-Pass compiler

– Converts the program into one or more intermediate representations
in steps between source code and machine code

– Reprocesses the entire compilation unit in each sequential pass

44

Introduction

• Advantages

– One-pass compilers are

• Smaller and

• Faster than multi-pass compilers

• Disadvantages

– One-pass compilers are unable to generate as efficient programs as
multi-pass compilers due to the limited scope of available information

45

One-Pass Compiler Structure

46

Lexical analyzer
Syntax-directed

translator

Source
Program

(Character
stream)

Token
stream

Bytecode

Syntax definition
(BNF or CFG

grammar)

One-Pass Compiler Structure

• Building our compiler involves
– Defining the syntax of a programming language

– Develop a source code parser

– Implementing syntax directed translation to generate intermediate
code

– Generating required Bytecode

– Optimize the generated Bytecode

• Language Definition

– Appearance of programming language

• Vocabulary : Regular expression

• Syntax : Backus-Naur Form (BNF) or Context Free Form (CFG)

47

Backus-Naur Form (BNF)

• BNF (Backus Normal Form or Backus–Naur Form)

– Notation techniques for context-free grammars, often used to
describe the syntax of languages used in computing, such as
computer programming languages, document formats, etc.

• A BNF specification is a set of derivation rules, written as

– <symbol> ::= __expression__

• Example

– As an example, consider this possible BNF for a U.S. postal address

• <postal-address> ::= <name-part> <street-address> <zip-part>

48

<postal-address> ::= <name-part> <street-address> <zip-part>

Backus-Naur Form (BNF)

• BNF (Backus Normal Form or Backus–Naur Form)

– Notation techniques for context-free grammars, often used to
describe the syntax of languages used in computing, such as
computer programming languages, document formats, etc.

• A BNF specification is a set of derivation rules, written as

– <symbol> ::= __expression__

• Example

– As an example, consider this possible BNF for a U.S. postal address

• <postal-address> ::= <name-part> <street-address> <zip-part>

49

<postal-address> ::= <name-part> <street-address> <zip-part>

Grammars for Syntax Definition

• A Context-free Grammar (CFG) is utilized to describe the
syntactic structure of a language

• A CFG Is characterized by

– A set of tokens or terminal symbols

– A set of non-terminals

– A set of production rules,
each rule has the form

• NT  {T, NT}*

– A non-terminal designated as the start symbol

– Terminal symbols : bold face string if, num, id

– Nonterminal symbol, grammar symbol: italicized names, list,
digit, A, B

50

Grammars for Syntax Definition

• list  list + digit

• list  list - digit

• list  digit

• digit  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• (the “|” means OR)  So we could have written

– list  list + digit | list - digit | digit)

51

Grammars for Syntax Definition

• Using the CFG defined on the previous slide, we can derive the string:
9 - 5 + 2 as follows

52

list  list + digit

 list - digit + digit

 digit - digit + digit

 9 - digit + digit

 9 - 5 + digit

 9 - 5 + 2

P1 : list  list + digit

P2 : list  list - digit

P3 : list  digit

P4 : digit  9

P4 : digit  5

P4 : digit  2

Grammars for Syntax Definition

• This derivation could also be represented via a Parse Tree (parents on
left, children on right)

53

list

digit

digit

list

digit

list

9

5

2-

+

Grammars for Syntax Definition

• A More Complex Grammar

54

block  begin opt_stmts end

opt_stmts  stmt_list | 

stmt_list  stmt_list ; stmt | stmt

• What is this grammar for ?

• What does “” represent ?

• What kind of production rule is this ?

Syntax Definition

• To specify the syntax of a language : CFG and BNF

• An alphabet of a language is a set of symbols

– Examples

• {0,1} for a binary number

– System(language)={0,1,100,101,...}

• {a,b,c} for language={a,b,c, ac,abcc..}

• {if,(,),else ...} for a if statements={if(a==1)goto10, if--}

• A string over an alphabet

– is a sequence of zero or more symbols from the alphabet

– Examples

• 0,1,10,00,11,111,0202 ... strings for a alphabet {0,1}

– Null string is a string which does not have any symbol of alphabet

55

Syntax Definition

• Language

– Is a subset of all the strings over a given alphabet

– Alphabets Ai Languages Li for Ai

– A0={0,1} L0={0,1,100,101,...}

– A1={a,b,c} L1={a,b,c, ac, abcc..}

– A2={all of C tokens} L2= {all sentences of C program}

• Grammar G=(N,T,P,S)

– N : a set of nonterminal symbols

– T : a set of terminal symbols, tokens

– P : a set of production rules

– S : a start symbol, S∈N

56

Syntax Definition

• Grammar G for a language L={9-5+2, 3-1, ...}

– G=(N,T,P,S)

• N={list,digit}

• T={0,1,2,3,4,5,6,7,8,9,-,+}

– P : list -> list + digit

– list -> list - digit

– list -> digit

– digit -> 0|1|2|3|4|5|6|7|8|9

• S=list

57

Parse Tree

• More formally, a parse tree for a CFG has the following Properties:

– Root Is labeled with the Start Symbol

– Leaf node is a token or 

– Interior node (now leaf) is a Non-Terminal

– If A  x1x2…xn, Then A Is an Interior; x1x2…xn Are Children of A

and may be Non-Terminals or Tokens

• Two derivations (Parse Trees) for the same token string

58

Parse Tree

• More formally, a parse tree for a CFG has the following Properties:

– Root Is labeled with the Start Symbol

– Leaf node is a token or 

– Interior node (now leaf) is a Non-Terminal

– If A  x1x2…xn, Then A Is an Interior; x1x2…xn Are Children of A

and May Be Non-Terminals or Tokens

• Two derivations (Parse Trees) for the same token string

59

Parse Tree

• Other representation

60

Ambiguity

• A grammar is said to be ambiguous if the grammar has more than
one parse tree for a given string of tokens

• Suppose a grammar G that can not distinguish between lists and
digits as in the following example

– G : string →string + string | string - string |0|1|2|3|4|5|6|7|8|9

• Assume 9-5+2

61

Ambiguity

62

string

string

9 - 5 + 2

string

string string

string

string

9 - 5 + 2

string

string string

1

2

1

Associativity of Operator

• An operator is said to be left associative if an operand with
operators on both sides of it is taken by the operator to its left

– Left-associative operators have left-recursive productions

• Left Associative Grammar

– list →list + digit | list - digit

– digit →0|1|…|9

– String a+b+c has the same meaning as (a+b)+c

• Right Associative Grammar

– right →letter = right | letter

– letter →a|b|…|z

– String a=b=c has the same meaning as a=(b=c)

63

Associativity of Operator

• Left associative grammer

64

Associativity of Operator

• Right associative grammer

65

Precedence of Operators

• We say that an operator (*) has a higher precedence than other
operator (+), if the operator (*) takes operands before other
operator (+) does

• Left associative operators : + , - , * , /

• Right associative operators : = , **

• Syntax of full expressions

66

Operator Associative Precedence

+ , - Left 1 Low

* , / Left 2 High

Precedence of Operators

• Syntax

– expr →expr + term | expr - term | term

– term →term * factor | term / factor | factor

– factor →digit | (expr)

– digit →0 | 1 | … | 9

• String 2+3*5 has the same meaning as 2+(3*5)

67

expr

expr term

factor

+2 3 * 5

term

factor

term

factor

number

number

number

Precedence of Operators

• Syntax of statements

– stmt →id = expr ;

• | if (expr) stmt ;

• | if (expr) stmt else stmt ;

• | while (expr) stmt ;

– expr →expr + term | expr - term | term

– term →term * factor | term / factor | factor

– factor →digit | (expr)

– digit →0 | 1 | … | 9

68

Syntax-Directed Translation (SDT)

1. Use a CF grammar to specify the syntactic structure of the
language

2. Associate a set of attributes with the terminals and non-terminals
of the grammar

3. Associate with each production a set of semantic rules to
compute values of attributes

4. A parse tree is traversed and semantic rules applied
1. After the tree traversal(s) are completed, the attribute values on the

non-terminals contain the translated form of the input

69

Example Attribute Grammar

• Production

– expr  expr1 + term
expr  expr1 - term
expr  term
term  0
term  1
…
term  9

70

• Semantic rule

– expr.t := expr1.t // term.t // “+”
expr.t := expr1.t // term.t // “-”
expr.t := term.t
term.t := “0”
term.t := “1”
…

term.t := “9”

Synthesized & Inherited Attributes

• Synthesized attribute

– if its value at a parse-tree node is determined from the attribute
values at the children of the node

• Inherited attribute

– if its value at a parse-tree node is determined by the parent (by
enforcing the parent’s semantic rules)

71

Example Annotated Parse Tree

72

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Depth-First Traversals

• procedure visit(n : node);
begin

for each child m of n, from left to right do
visit(m);

evaluate semantic rules at node n
end

73

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Parsing

• Main rule

– If token string x ∈ L(G), then

• parse tree

• else error message

• Top-Down parsing

– At node n labeled with nonterminal A, select one of the productions
whose left part is A and construct children of node n with the symbols
on the right side of that production

– Find the next node at which a sub-tree is to be constructed

– E.g.

• G: type →simple

• |↑id

• |array [simple] of type

• simple →integer

• |char

• |num dotdot num
74

Parsing (Top-Down Parsing While Scanning the Input From Left to Right)

75

Parsing (Top-Down Parsing While Scanning the Input From Left to Right)

76

Parsing (Top-Down Parsing While Scanning the Input From Left to Right)

77

Parsing (Top-Down Parsing While Scanning the Input From Left to Right)

78

Comparing Grammars with Left Recursion

• Notice the location of semantic actions in the tree

• What is order of processing?

79

expr

expr

expr

term

term

term
{print(‘2’)}

{print(‘+’)}

{print(‘5’)}

{print(‘-’)}

{print(‘9’)}

5

+

2
-

9

Comparing Grammars without Left Recursion

• Now, notice the location of semantic actions in tree for revised
grammar

• What is the order of processing in this case?

80

{print(‘2’)}

expr

term

term {print(‘-’)}

term {print(‘+’)}
{print(‘5’)}

{print(‘9’)} rest

rest

2

5

-9
+



rest

