Operation on fuzzy sets

إعداد:

Tuore III Troperties of Classical Set Operations	
Involutive law	$\overline{\overline{A}} = A$
Commutative law	$A \cup B = B \cup A$
	$A \cap B = B \cap A$
Associative law	$(A \cup B) \cup C = A \cup (B \cup C)$
	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributive law	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cup A = A$
	$A \cap A = A$
	$A \cup (A \cap B) = A$
	$A \cap (A \cup B) = A$
	$A \cup (\overline{A} \cap B) = A \cup B$
	$A \cap (\overline{A} \cup B) = A \cap B$
	$A \cup S = S$
	$A \cap \emptyset = \emptyset$
	$A \cup \emptyset = A$
	$A \cap \mathbf{S} = A$
	$A \cap \overline{A} = \emptyset$
	$A \cup \overline{A} = S$
DeMorgan's law	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
	<u></u>
	$\overline{A \cup B} = \overline{A} \cap \overline{B}$

Operation on fuzzy sets

Union and Intersection

Union:

$$\underset{\sim}{\mu_{A\cup B}}(x) = \underset{\sim}{\mu_{A}}(x) V \underset{\sim}{\mu_{B}}(x).$$

Intersection:

${\bf Complement}$

$$\underset{\sim}{\mu_{\stackrel{-}{A}}(x)}=1-\underset{\sim}{\mu_{\stackrel{A}{A}}(x)}.$$

Excluded middle law for fuzzy set

Excluded middle law for classical sets

Examples

Consider two fuzzy sets $\mathop{A}\limits_{\sim}$ and $\mathop{B}\limits_{\sim}$ find Complement, Union, Intersection, Difference, and De Morgan's law.

$$A = \left\{ \frac{1}{2} + \frac{0.5}{3} + \frac{0.6}{4} + \frac{0.2}{5} + \frac{0.6}{6} \right\},$$

$$B = \left\{ \frac{0.5}{2} + \frac{0.8}{3} + \frac{0.4}{4} + \frac{0.7}{5} + \frac{0.3}{6} \right\}.$$

Complement

$$\bar{A} = \left\{ \frac{0}{2} + \frac{0.5}{3} + \frac{0.4}{4} + \frac{0.8}{5} + \frac{0.4}{6} \right\},$$

$$\bar{B} = \left\{ \frac{0.5}{2} + \frac{0.2}{3} + \frac{0.6}{4} + \frac{0.3}{5} + \frac{0.7}{6} \right\}.$$

Union

$$\mathop{A}_{\sim} \cup \mathop{B}_{\sim} = \left\{ \frac{1}{2} + \frac{0.8}{3} + \frac{0.6}{4} + \frac{0.7}{5} + \frac{0.6}{6} \right\}.$$

$$A \cap B = \left\{ \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.4}{4} + \frac{0.2}{5} + \frac{0.3}{6} \right\}.$$

De Morgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \begin{cases} \frac{0}{2} + \frac{0.2}{3} + \frac{0.4}{4} + \frac{0.3}{5} + \frac{0.4}{6} \end{cases},
\overline{A \cap B} = \overline{A} \cup \overline{B} = \begin{cases} \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.6}{4} + \frac{0.8}{5} + \frac{0.7}{6} \end{cases}.$$

Using MATLAB

Calculate, $A \cup B$, $A \cap B$, \bar{A} , \bar{B} by a Matlab program.

homework

Consider the following fuzzy sets

$$A = \left\{ \frac{0.8}{10} + \frac{0.3}{15} + \frac{0.6}{20} + \frac{0.2}{25} \right\},\,$$

$$B = \left\{ \frac{0.4}{10} + \frac{0.2}{15} + \frac{0.9}{20} + \frac{0.1}{25} \right\}.$$

Calculate the Demorgan's law $\overline{A \cup B} = \overline{A} \cap \overline{B}$, and $\overline{A \cap B} = \overline{A} \cup \overline{B}$ using a matlab program.

subsethood

$$S(A,B) = \frac{|A \cap B|}{|A|}$$

$$0 \leq S(A, B) \leq 1.$$

Calculate the degrees of subsethood S(C,D) and S(D,C) for the fuzzy sets

$$C(x) = \frac{x}{x+1}$$
 for $x \in \{0, 1, ..., 10\} = X$;
 $D(x) = 1 - x/10$ for $x \in \{0, 1, ..., 10\} = X$.