
1

 Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

2

What is a Data Warehouse?

 Defined in many different ways, but not rigorously.

 A decision support database that is maintained separately from

the organization’s operational database

 Support information processing by providing a solid platform of

consolidated, historical data for analysis.

 “A data warehouse is a subject-oriented, integrated, time-variant,

and nonvolatile collection of data in support of management’s

decision-making process.”—W. H. Inmon

 Data warehousing:

 The process of constructing and using data warehouses

3

Data Warehouse—Subject-
Oriented

 Organized around major subjects, such as customer,

product, sales

 Focusing on the modeling and analysis of data for

decision makers, not on daily operations or transaction

processing

 Provide a simple and concise view around particular

subject issues by excluding data that are not useful in

the decision support process

4

Data Warehouse—Integrated

 Constructed by integrating multiple, heterogeneous data
sources
 relational databases, flat files, on-line transaction

records
 Data cleaning and data integration techniques are

applied.
 Ensure consistency in naming conventions, encoding

structures, attribute measures, etc. among different
data sources

 E.g., Hotel price: currency, tax, breakfast covered, etc.

 When data is moved to the warehouse, it is
converted.

5

Data Warehouse—Time Variant

 The time horizon for the data warehouse is significantly

longer than that of operational systems

 Operational database: current value data

 Data warehouse data: provide information from a

historical perspective (e.g., past 5-10 years)

 Every key structure in the data warehouse

 Contains an element of time, explicitly or implicitly

 But the key of operational data may or may not

contain “time element”

6

Data Warehouse—Nonvolatile

 A physically separate store of data transformed from the

operational environment

 Operational update of data does not occur in the data

warehouse environment

 Does not require transaction processing, recovery,

and concurrency control mechanisms

 Requires only two operations in data accessing:

 initial loading of data and access of data

7

OLTP vs. OLAP

 OLTP OLAP

users clerk, IT professional knowledge worker

function day to day operations decision support

DB design application-oriented subject-oriented

data current, up-to-date

detailed, flat relational

isolated

historical,

summarized, multidimensional

integrated, consolidated

usage repetitive ad-hoc

access read/write

index/hash on prim. key

lots of scans

unit of work short, simple transaction complex query

records accessed tens millions

#users thousands hundreds

DB size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response

8

Why a Separate Data Warehouse?

 High performance for both systems

 DBMS— tuned for OLTP: access methods, indexing, concurrency

control, recovery

 Warehouse—tuned for OLAP: complex OLAP queries,

multidimensional view, consolidation

 Different functions and different data:

 missing data: Decision support requires historical data which

operational DBs do not typically maintain

 data consolidation: DS requires consolidation (aggregation,

summarization) of data from heterogeneous sources

 data quality: different sources typically use inconsistent data

representations, codes and formats which have to be reconciled

 Note: There are more and more systems which perform OLAP

analysis directly on relational databases

9

Data Warehouse: A Multi-Tiered Architecture

Data

Warehouse

Extract

Transform

Load

Refresh

OLAP

Engine

Analysis

Query

Reports

Data mining

Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational

DBs

Other

sources

Data Storage

OLAP Server

10

Three Data Warehouse Models

 Enterprise warehouse

 collects all of the information about subjects spanning

the entire organization

 Data Mart

 a subset of corporate-wide data that is of value to a

specific groups of users. Its scope is confined to

specific, selected groups, such as marketing data mart

 Independent vs. dependent (directly from warehouse) data mart

 Virtual warehouse

 A set of views over operational databases

 Only some of the possible summary views may be

materialized

11

Extraction, Transformation, and Loading
(ETL)

 Data extraction

 get data from multiple, heterogeneous, and external
sources

 Data cleaning

 detect errors in the data and rectify them when possible

 Data transformation

 convert data from legacy or host format to warehouse
format

 Load

 sort, summarize, consolidate, compute views, check
integrity, and build indicies and partitions

 Refresh

 propagate the updates from the data sources to the
warehouse

12

Metadata Repository

 Meta data is the data defining warehouse objects. It stores:

 Description of the structure of the data warehouse

 schema, view, dimensions, hierarchies, derived data defn, data

mart locations and contents

 Operational meta-data

 data lineage (history of migrated data and transformation path),

currency of data (active, archived, or purged), monitoring

information (warehouse usage statistics, error reports, audit trails)

 The algorithms used for summarization

 The mapping from operational environment to the data warehouse

 Data related to system performance

 warehouse schema, view and derived data definitions

 Business data

 business terms and definitions, ownership of data, charging policies

13

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

14

From Tables and Spreadsheets to
Data Cubes

 A data warehouse is based on a multidimensional data model

which views data in the form of a data cube

 A data cube, such as sales, allows data to be modeled and viewed in

multiple dimensions

 Dimension tables, such as item (item_name, brand, type), or

time(day, week, month, quarter, year)

 Fact table contains measures (such as dollars_sold) and keys

to each of the related dimension tables

 In data warehousing literature, an n-D base cube is called a base

cuboid. The top most 0-D cuboid, which holds the highest-level of

summarization, is called the apex cuboid. The lattice of cuboids

forms a data cube.

15

Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

16

Conceptual Modeling of Data
Warehouses

 Modeling data warehouses: dimensions & measures

 Star schema: A fact table in the middle connected to a

set of dimension tables

 Snowflake schema: A refinement of star schema

where some dimensional hierarchy is normalized into a

set of smaller dimension tables, forming a shape

similar to snowflake

 Fact constellations: Multiple fact tables share

dimension tables, viewed as a collection of stars,

therefore called galaxy schema or fact constellation

17

Example of Star Schema

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

state_or_province

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

18

Example of Snowflake Schema

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_key

item

branch_key

branch_name

branch_type

branch

supplier_key

supplier_type

supplier

city_key

city

state_or_province

country

city

19

Example of Fact
Constellation

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

province_or_state

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key

shipper_name

location_key

shipper_type

shipper

20

A Concept Hierarchy:
Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

21

Data Cube Measures: Three Categories

 Distributive: if the result derived by applying the function

to n aggregate values is the same as that derived by

applying the function on all the data without partitioning

 E.g., count(), sum(), min(), max()

 Algebraic: if it can be computed by an algebraic function

with M arguments (where M is a bounded integer), each of

which is obtained by applying a distributive aggregate

function

 E.g., avg(), min_N(), standard_deviation()

 Holistic: if there is no constant bound on the storage size

needed to describe a subaggregate.

 E.g., median(), mode(), rank()

22

View of Warehouses and
Hierarchies

Specification of hierarchies

 Schema hierarchy

day < {month <

quarter; week} < year

 Set_grouping hierarchy

{1..10} < inexpensive

23

Multidimensional Data

 Sales volume as a function of product, month,
and region

P
ro

d
u
ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

24

A Sample Data Cube

Total annual sales

of TVs in U.S.A.Date

C
o
u

n
tr

y

sum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

25

Cuboids Corresponding to the
Cube

all

product date country

product,date product,country date, country

product, date, country

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

26

Typical OLAP Operations

 Roll up (drill-up): summarize data

 by climbing up hierarchy or by dimension reduction
 Drill down (roll down): reverse of roll-up

 from higher level summary to lower level summary or
detailed data, or introducing new dimensions

 Slice and dice: project and select
 Pivot (rotate):

 reorient the cube, visualization, 3D to series of 2D planes
 Other operations

 drill across: involving (across) more than one fact table
 drill through: through the bottom level of the cube to its

back-end relational tables (using SQL)

27

Fig. 3.10 Typical OLAP
Operations

28

A Star-Net Query Model

Shipping Method

AIR-EXPRESS

TRUCK
ORDER

Customer Orders

CONTRACTS

Customer

Product

PRODUCT GROUP

PRODUCT LINE

PRODUCT ITEM

SALES PERSON

DISTRICT

DIVISION

OrganizationPromotion

CITY

COUNTRY

REGION

Location

DAILYQTRLYANNUALY
Time

Each circle is
called a footprint

29

Browsing a Data Cube

 Visualization

 OLAP capabilities

 Interactive manipulation

30

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

31

Design of Data Warehouse: A
Business Analysis Framework

 Four views regarding the design of a data warehouse

 Top-down view

 allows selection of the relevant information necessary for the

data warehouse

 Data source view

 exposes the information being captured, stored, and

managed by operational systems

 Data warehouse view

 consists of fact tables and dimension tables

 Business query view

 sees the perspectives of data in the warehouse from the view

of end-user

32

Data Warehouse Design
Process

 Top-down, bottom-up approaches or a combination of both

 Top-down: Starts with overall design and planning (mature)

 Bottom-up: Starts with experiments and prototypes (rapid)

 From software engineering point of view

 Waterfall: structured and systematic analysis at each step before

proceeding to the next

 Spiral: rapid generation of increasingly functional systems, short

turn around time, quick turn around

 Typical data warehouse design process

 Choose a business process to model, e.g., orders, invoices, etc.

 Choose the grain (atomic level of data) of the business process

 Choose the dimensions that will apply to each fact table record

 Choose the measure that will populate each fact table record

33

Data Warehouse
Development: A

Recommended Approach

Define a high-level corporate data model

Data

Mart

Data

Mart

Distribute

d Data

Marts

Multi-Tier

Data

Warehouse

Enterpris

e Data

Warehous

e
Model refinementModel refinement

34

Data Warehouse Usage

 Three kinds of data warehouse applications

 Information processing

 supports querying, basic statistical analysis, and reporting

using crosstabs, tables, charts and graphs

 Analytical processing

 multidimensional analysis of data warehouse data

 supports basic OLAP operations, slice-dice, drilling, pivoting

 Data mining

 knowledge discovery from hidden patterns

 supports associations, constructing analytical models,

performing classification and prediction, and presenting the

mining results using visualization tools

35

From On-Line Analytical Processing
(OLAP)

to On Line Analytical Mining (OLAM)

 Why online analytical mining?
 High quality of data in data warehouses

 DW contains integrated, consistent, cleaned data
 Available information processing structure surrounding

data warehouses
 ODBC, OLEDB, Web accessing, service facilities,

reporting and OLAP tools
 OLAP-based exploratory data analysis

 Mining with drilling, dicing, pivoting, etc.
 On-line selection of data mining functions

 Integration and swapping of multiple mining
functions, algorithms, and tasks

36

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

37

Efficient Data Cube
Computation

 Data cube can be viewed as a lattice of cuboids

 The bottom-most cuboid is the base cuboid

 The top-most cuboid (apex) contains only one cell

 How many cuboids in an n-dimensional cube with L

levels?

 Materialization of data cube

 Materialize every (cuboid) (full materialization),

none (no materialization), or some (partial

materialization)

 Selection of which cuboids to materialize

 Based on size, sharing, access frequency, etc.

)1
1
(




n

i
i

LT

38

The “Compute Cube” Operator

 Cube definition and computation in DMQL

define cube sales [item, city, year]: sum (sales_in_dollars)

compute cube sales

 Transform it into a SQL-like language (with a new operator cube
by, introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year
 Need compute the following Group-Bys

(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
()

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)

39

Indexing OLAP Data: Bitmap
Index

 Index on a particular column
 Each value in the column has a bit vector: bit-op is fast
 The length of the bit vector: # of records in the base table
 The i-th bit is set if the i-th row of the base table has the value for

the indexed column
 not suitable for high cardinality domains
 A recent bit compression technique, Word-Aligned Hybrid (WAH),

makes it work for high cardinality domain as well [Wu, et al. TODS’06]

Cust Region Type

C1 Asia Retail

C2 Europe Dealer

C3 Asia Dealer

C4 America Retail

C5 Europe Dealer

RecID Retail Dealer

1 1 0

2 0 1

3 0 1

4 1 0

5 0 1

RecIDAsia Europe America

1 1 0 0

2 0 1 0

3 1 0 0

4 0 0 1

5 0 1 0

Base table Index on Region Index on Type

40

Indexing OLAP Data: Join Indices

 Join index: JI(R-id, S-id) where R (R-id, …)  S
(S-id, …)

 Traditional indices map the values to a list of
record ids
 It materializes relational join in JI file and

speeds up relational join
 In data warehouses, join index relates the values

of the dimensions of a start schema to rows in
the fact table.
 E.g. fact table: Sales and two dimensions city

and product
 A join index on city maintains for each

distinct city a list of R-IDs of the tuples
recording the Sales in the city

 Join indices can span multiple dimensions

41

Efficient Processing OLAP Queries

 Determine which operations should be performed on the available cuboids

 Transform drill, roll, etc. into corresponding SQL and/or OLAP operations,

e.g., dice = selection + projection

 Determine which materialized cuboid(s) should be selected for OLAP op.

 Let the query to be processed be on {brand, province_or_state} with the

condition “year = 2004”, and there are 4 materialized cuboids available:

1) {year, item_name, city}

2) {year, brand, country}

3) {year, brand, province_or_state}

4) {item_name, province_or_state} where year = 2004

Which should be selected to process the query?

 Explore indexing structures and compressed vs. dense array structs in MOLAP

42

OLAP Server Architectures

 Relational OLAP (ROLAP)

 Use relational or extended-relational DBMS to store and manage

warehouse data and OLAP middle ware

 Include optimization of DBMS backend, implementation of

aggregation navigation logic, and additional tools and services

 Greater scalability

 Multidimensional OLAP (MOLAP)

 Sparse array-based multidimensional storage engine

 Fast indexing to pre-computed summarized data

 Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)

 Flexibility, e.g., low level: relational, high-level: array

 Specialized SQL servers (e.g., Redbricks)

 Specialized support for SQL queries over star/snowflake schemas

43

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

44

Attribute-Oriented
Induction

 Proposed in 1989 (KDD ‘89 workshop)

 Not confined to categorical data nor particular measures

 How it is done?

 Collect the task-relevant data (initial relation) using a

relational database query

 Perform generalization by attribute removal or

attribute generalization

 Apply aggregation by merging identical, generalized

tuples and accumulating their respective counts

 Interaction with users for knowledge presentation

45

Attribute-Oriented Induction: An
Example

Example: Describe general characteristics of graduate

students in the University database

 Step 1. Fetch relevant set of data using an SQL

statement, e.g.,

Select * (i.e., name, gender, major, birth_place,

birth_date, residence, phone#, gpa)

from student

where student_status in {“Msc”, “MBA”, “PhD” }

 Step 2. Perform attribute-oriented induction

 Step 3. Present results in generalized relation, cross-tab,

or rule forms

46

Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA

Jim

Woodman

 M CS Vancouver,BC,

Canada

 8-12-76 3511 Main St.,

Richmond

687-4598 3.67

Scott

Lachance

 M CS Montreal, Que,

Canada

28-7-75 345 1st Ave.,

Richmond

253-9106 3.70

Laura Lee

…

 F

…

Physics

…

Seattle, WA, USA

…
25-8-70

…

125 Austin Ave.,

Burnaby

…

420-5232

…

3.83

…

Removed Retained Sci,Eng,

Bus
Country Age range City Removed Excl,

VG,..

Gender Major Birth_region Age_range Residence GPA Count

 M Science Canada 20-25 Richmond Very-good 16

 F Science Foreign 25-30 Burnaby Excellent 22

 … … … … … … …

 Birth_Region

Gender

Canada Foreign Total

 M 16 14 30

 F 10 22 32

 Total 26 36 62

Prime

Generalized

Relation

Initial

Relation

47

Basic Principles of Attribute-Oriented
Induction

 Data focusing: task-relevant data, including dimensions,

and the result is the initial relation

 Attribute-removal: remove attribute A if there is a large set

of distinct values for A but (1) there is no generalization

operator on A, or (2) A’s higher level concepts are

expressed in terms of other attributes

 Attribute-generalization: If there is a large set of distinct

values for A, and there exists a set of generalization

operators on A, then select an operator and generalize A

 Attribute-threshold control: typical 2-8, specified/default

 Generalized relation threshold control: control the final

relation/rule size

48

Attribute-Oriented Induction: Basic
Algorithm

 InitialRel: Query processing of task-relevant data, deriving

the initial relation.

 PreGen: Based on the analysis of the number of distinct

values in each attribute, determine generalization plan for

each attribute: removal? or how high to generalize?

 PrimeGen: Based on the PreGen plan, perform

generalization to the right level to derive a “prime

generalized relation”, accumulating the counts.

 Presentation: User interaction: (1) adjust levels by drilling,

(2) pivoting, (3) mapping into rules, cross tabs,

visualization presentations.

49

Presentation of Generalized
Results

 Generalized relation:

 Relations where some or all attributes are generalized, with counts

or other aggregation values accumulated.

 Cross tabulation:

 Mapping results into cross tabulation form (similar to contingency

tables).

 Visualization techniques:

 Pie charts, bar charts, curves, cubes, and other visual forms.

 Quantitative characteristic rules:

 Mapping generalized result into characteristic rules with quantitative

information associated with it, e.g.,

.%]47:["")(_%]53:["")(_

)()(

tforeignxregionbirthtCanadaxregionbirth

xmalexgrad





50

Mining Class Comparisons

 Comparison: Comparing two or more classes

 Method:

 Partition the set of relevant data into the target class and the

contrasting class(es)

 Generalize both classes to the same high level concepts

 Compare tuples with the same high level descriptions

 Present for every tuple its description and two measures

 support - distribution within single class

 comparison - distribution between classes

 Highlight the tuples with strong discriminant features

 Relevance Analysis:

 Find attributes (features) which best distinguish different classes

51

Concept Description vs. Cube-Based
OLAP

 Similarity:
 Data generalization
 Presentation of data summarization at multiple levels of

abstraction
 Interactive drilling, pivoting, slicing and dicing

 Differences:
 OLAP has systematic preprocessing, query independent,

and can drill down to rather low level
 AOI has automated desired level allocation, and may

perform dimension relevance analysis/ranking when
there are many relevant dimensions

 AOI works on the data which are not in relational forms

52

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 Data Warehouse Modeling: Data Cube and OLAP

 Data Warehouse Design and Usage

 Data Warehouse Implementation

 Data Generalization by Attribute-Oriented

Induction

 Summary

53

Summary

 Data warehousing: A multi-dimensional model of a data warehouse

 A data cube consists of dimensions & measures

 Star schema, snowflake schema, fact constellations

 OLAP operations: drilling, rolling, slicing, dicing and pivoting

 Data Warehouse Architecture, Design, and Usage

 Multi-tiered architecture

 Business analysis design framework

 Information processing, analytical processing, data mining, OLAM (Online

Analytical Mining)

 Implementation: Efficient computation of data cubes

 Partial vs. full vs. no materialization

 Indexing OALP data: Bitmap index and join index

 OLAP query processing

 OLAP servers: ROLAP, MOLAP, HOLAP

 Data generalization: Attribute-oriented induction

54

References (I)

 S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan,

and S. Sarawagi. On the computation of multidimensional aggregates. VLDB’96

 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data

warehouses. SIGMOD’97

 R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

 S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.

ACM SIGMOD Record, 26:65-74, 1997

 E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27,

July 1993.

 J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by,

cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.

 A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and

Applications. MIT Press, 1999.

 J. Han. Towards on-line analytical mining in large databases. ACM SIGMOD Record,

27:97-107, 1998.

 V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.

SIGMOD’96

55

References (II)

 C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design:
Relational and Dimensional Techniques. John Wiley, 2003

 W. H. Inmon. Building the Data Warehouse. John Wiley, 1996
 R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. 2ed. John Wiley, 2002
 P. O'Neil and D. Quass. Improved query performance with variant indexes.

SIGMOD'97
 Microsoft. OLEDB for OLAP programmer's reference version 1.0. In

http://www.microsoft.com/data/oledb/olap, 1998
 A. Shoshani. OLAP and statistical databases: Similarities and differences.

PODS’00.
 S. Sarawagi and M. Stonebraker. Efficient organization of large

multidimensional arrays. ICDE'94
 P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.
 J. Widom. Research problems in data warehousing. CIKM’95.
 K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient

Compression, ACM Trans. on Database Systems (TODS), 31(1), 2006, pp. 1-38.

May 30, 2019 Data Mining: Concepts and Techniques 56

57

Chapter 4: Data Warehousing and On-line
Analytical Processing

 Data Warehouse: Basic Concepts

 (a) What Is a Data Warehouse?

 (b) Data Warehouse: A Multi-Tiered Architecture

 (c) Three Data Warehouse Models: Enterprise Warehouse, Data Mart, ad Virtual Warehouse

 (d) Extraction, Transformation and Loading

 (e) Metadata Repository

 Data Warehouse Modeling: Data Cube and OLAP

 (a) Cube: A Lattice of Cuboids

 (b) Conceptual Modeling of Data Warehouses

 (c) Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Databases

 (d) Dimensions: The Role of Concept Hierarchy

 (e) Measures: Their Categorization and Computation

 (f) Cube Definitions in Database systems

 (g) Typical OLAP Operations

 (h) A Starnet Query Model for Querying Multidimensional Databases

 Data Warehouse Design and Usage

 (a) Design of Data Warehouses: A Business Analysis Framework

 (b) Data Warehouses Design Processes

 (c) Data Warehouse Usage

 (d) From On-Line Analytical Processing to On-Line Analytical Mining

 Data Warehouse Implementation

 (a) Efficient Data Cube Computation: Cube Operation, Materialization of Data Cubes, and Iceberg Cubes

 (b) Indexing OLAP Data: Bitmap Index and Join Index

 (c) Efficient Processing of OLAP Queries

 (d) OLAP Server Architectures: ROLAP vs. MOLAP vs. HOLAP

 Data Generalization by Attribute-Oriented Induction

 (a) Attribute-Oriented Induction for Data Characterization

 (b) Efficient Implementation of Attribute-Oriented Induction

 (c) Attribute-Oriented Induction for Class Comparisons

 (d) Attribute-Oriented Induction vs. Cube-Based OLAP

 Summary

58

Compression of Bitmap Indices

 Bitmap indexes must be compressed to reduce I/O costs

and minimize CPU usage—majority of the bits are 0’s

 Two compression schemes:

 Byte-aligned Bitmap Code (BBC)

 Word-Aligned Hybrid (WAH) code

 Time and space required to operate on compressed

bitmap is proportional to the total size of the bitmap

 Optimal on attributes of low cardinality as well as those of

high cardinality.

 WAH out performs BBC by about a factor of two

5959

Data Mining:
Concepts and Techniques

(3rd ed.)

— Chapter 5 —

Jiawei Han, Micheline Kamber, and Jian Pei

University of Illinois at Urbana-Champaign &

Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

605/30/2019 Data Mining: Concepts and Techniques 60

6161

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

6262

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplierc

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

63

Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
1. (9/15, milk, Urbana, Dairy_land)
2. (9/15, milk, Urbana, *)
3. (*, milk, Urbana, *)
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *)

all

time,item

time,item,location

time, item, location, supplier

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid

6464

Cube Materialization:
Full Cube vs. Iceberg Cube

 Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Computing only the cuboid cells whose measure satisfies the
iceberg condition

 Only a small portion of cells may be “above the water’’ in a
sparse cube

 Avoid explosive growth: A cube with 100 dimensions

 2 base cells: (a1, a2, …., a100), (b1, b2, …, b100)

 How many aggregate cells if “having count >= 1”?

 What about “having count >= 2”?

iceberg
condition

65

Iceberg Cube, Closed Cube & Cube Shell

 Is iceberg cube good enough?

 2 base cells: {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube have if having count(*) >=

10? Hint: A huge but tricky number!

 Close cube:

 Closed cell c: if there exists no cell d, s.t. d is a descendant of c,

and d has the same measure value as c.

 Closed cube: a cube consisting of only closed cells

 What is the closed cube of the above base cuboid? Hint: only 3

cells

 Cube Shell

 Precompute only the cuboids involving a small # of dimensions,

e.g., 3

 More dimension combinations will need to be computed on the fly

For (A1, A2, … A10), how many combinations to compute?

6666

Roadmap for Efficient Computation

 General cube computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies

 Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande &

Naughton, SIGMOD’97)

 Top-down:

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

 Integrating Top-Down and Bottom-Up:

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes:

 Partial cube, closed cube, approximate cube, etc.

6767

General Heuristics (Agarwal et al. VLDB’96)

 Sorting, hashing, and grouping operations are applied to the dimension

attributes in order to reorder and cluster related tuples

 Aggregates may be computed from previously computed aggregates,

rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest, previously

computed cuboid

 Cache-results: caching results of a cuboid from which other

cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the

same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when

sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple

cuboids when hash-based algorithms are used

6868

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

6969

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

7070

Multi-Way Array Aggregation

 Array-based “bottom-up” algorithm

 Using multi-dimensional chunks

 No direct tuple comparisons

 Simultaneous aggregation on multiple

dimensions

 Intermediate aggregate values are re-

used for computing ancestor cuboids

 Cannot do Apriori pruning: No iceberg

optimization

7171

Multi-way Array Aggregation for Cube
Computation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory).

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order

which minimizes the # of times to visit each cell, and reduces

memory access and storage cost.

What is the best

traversing order

to do multi-way

aggregation?

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60

72

Multi-way Array Aggregation for
Cube Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 The best order is
the one that
minimizes the
memory
requirement and
reduced I/Os

73

Multi-way Array Aggregation for Cube
Computation (2-D to 1-D)

7474

Multi-Way Array Aggregation for Cube
Computation (Method Summary)

 Method: the planes should be sorted and computed

according to their size in ascending order

 Idea: keep the smallest plane in the main memory,

fetch and compute only one chunk at a time for the

largest plane

 Limitation of the method: computing well only for a small

number of dimensions

 If there are a large number of dimensions, “top-down”

computation and iceberg cube computation methods

can be explored

7575

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

7676

Bottom-Up Computation (BUC)

 BUC (Beyer & Ramakrishnan,
SIGMOD’99)

 Bottom-up cube computation
(Note: top-down in our view!)

 Divides dimensions into partitions
and facilitates iceberg pruning
 If a partition does not satisfy

min_sup, its descendants can
be pruned

 If minsup = 1 compute full
CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

7777

BUC: Partitioning

 Usually, entire data set
can’t fit in main memory

 Sort distinct values
 partition into blocks that fit

 Continue processing
 Optimizations

 Partitioning
 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning
 Cardinality, Skew, Correlation

 Collapsing duplicates
 Can’t do holistic aggregates anymore!

7878

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

7979

Star-Cubing: An Integrating Method

 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes

by Top-Down and Bottom-Up Integration, VLDB'03

 Explore shared dimensions

 E.g., dimension A is the shared dimension of ACD and AD

 ABD/AB means cuboid ABD has shared dimensions AB

 Allows for shared computations

 e.g., cuboid AB is computed simultaneously as ABD
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

 Aggregate in a top-down

manner but with the bottom-up

sub-layer underneath which will

allow Apriori pruning

 Shared dimensions grow in

bottom-up fashion

8080

Iceberg Pruning in Shared Dimensions

 Anti-monotonic property of shared dimensions

 If the measure is anti-monotonic, and if the

aggregate value on a shared dimension does not

satisfy the iceberg condition, then all the cells

extended from this shared dimension cannot

satisfy the condition either

 Intuition: if we can compute the shared dimensions

before the actual cuboid, we can use them to do

Apriori pruning

 Problem: how to prune while still aggregate

simultaneously on multiple dimensions?

8181

Cell Trees

 Use a tree structure similar

to H-tree to represent

cuboids

 Collapses common prefixes

to save memory

 Keep count at node

 Traverse the tree to retrieve

a particular tuple

8282

Star Attributes and Star Nodes

 Intuition: If a single-dimensional

aggregate on an attribute value p

does not satisfy the iceberg

condition, it is useless to distinguish

them during the iceberg

computation

 E.g., b2, b3, b4, c1, c2, c4, d1, d2,

d3

 Solution: Replace such attributes by

a *. Such attributes are star

attributes, and the corresponding

nodes in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

8383

Example: Star Reduction

 Suppose minsup = 2

 Perform one-dimensional

aggregation. Replace attribute

values whose count < 2 with *. And

collapse all *’s together

 Resulting table has all such

attributes replaced with the star-

attribute

 With regards to the iceberg

computation, this new table is a

lossless compression of the original

table

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1

8484

Star Tree

 Given the new compressed

table, it is possible to

construct the corresponding

cell tree—called star tree

 Keep a star table at the side

for easy lookup of star

attributes

 The star tree is a lossless

compression of the original

cell tree

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

8585

Star-Cubing Algorithm—DFS on Lattice
Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2

8686

Multi-Way Aggregation
ABC/ABCABD/ABACD/ABCD

ABCD

8787

Star-Cubing Algorithm—DFS on Star-Tree

8888

Multi-Way Star-Tree
Aggregation

 Start depth-first search at the root of the base star tree

 At each new node in the DFS, create corresponding star

tree that are descendents of the current tree according to

the integrated traversal ordering

 E.g., in the base tree, when DFS reaches a1, the

ACD/A tree is created

 When DFS reaches b*, the ABD/AD tree is created

 The counts in the base tree are carried over to the new

trees

8989

Multi-Way Aggregation (2)

 When DFS reaches a leaf node (e.g., d*), start

backtracking

 On every backtracking branch, the count in the

corresponding trees are output, the tree is destroyed,

and the node in the base tree is destroyed

 Example

 When traversing from d* back to c*, the

a1b*c*/a1b*c* tree is output and destroyed

 When traversing from c* back to b*, the

a1b*D/a1b* tree is output and destroyed

 When at b*, jump to b1 and repeat similar process

9090

Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP

9191

The Curse of Dimensionality

 None of the previous cubing method can handle high
dimensionality!

 A database of 600k tuples. Each dimension has cardinality
of 100 and zipf of 2.

9292

Motivation of High-D OLAP

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP:
A Minimal Cubing Approach, VLDB'04

 Challenge to current cubing methods:

 The “curse of dimensionality’’ problem

 Iceberg cube and compressed cubes: only delay the
inevitable explosion

 Full materialization: still significant overhead in
accessing results on disk

 High-D OLAP is needed in applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables

9393

Fast High-D OLAP with Minimal Cubing

 Observation: OLAP occurs only on a small subset of

dimensions at a time

 Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while

retaining inverted indices or value-list indices

3. Given the pre-computed fragment cubes,

dynamically compute cube cells of the high-

dimensional data cube online

9494

Properties of Proposed Method

 Partitions the data vertically

 Reduces high-dimensional cube into a set of lower

dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction

 Offers tradeoffs between the amount of pre-processing

and the speed of online computation

9595

Example Computation

 Let the cube aggregation function be count

 Divide the 5 dimensions into 2 shell fragments:

 (A, B, C) and (D, E)

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

9696

1-D Inverted Indices

 Build traditional invert index or RID list

Attribute Value TID List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

9797

Shell Fragment Cubes: Ideas

 Generalize the 1-D inverted indices to multi-dimensional
ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while
retaining the inverted indices

 For example, shell
fragment cube ABC
contains 7 cuboids:

 A, B, C

 AB, AC, BC

 ABC

 This completes the offline
computation stage

111 2 3 1 4 5a1 b1

04 5 2 3a2 b2

24 54 5 1 4 5a2 b1

22 31 2 3 2 3a1 b2

List SizeTID ListIntersectionCell





















9898

Shell Fragment Cubes: Size and
Design

 Given a database of T tuples, D dimensions, and F shell

fragment size, the fragment cubes’ space requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for

maximum online performance

 Known common combinations (e.g.,<city, state>)

should be grouped together.

 Shell fragment sizes can be adjusted for optimal balance

between offline and online computation



O T
D

F







(2F 1)











9999

ID_Measure Table

 If measures other than count are present, store in
ID_measure table separate from the shell fragments

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

100100

The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments

(P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.

101101

Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid

EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions

102102

Online Query Computation: Query

 A query has the general form

 Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

 For example, returns a 2-D

data cube.



a1,a2, ,an :M



3 ? ? * 1:count

103103

Online Query Computation: Method

 Given the fragment cubes, process a query as

follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each

fragment from the fragment cube

3. Intersect the TID lists from each fragment to

construct instantiated base table

4. Compute the data cube using the base table with

any cubing algorithm

104104

Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online

Cube

Instantiated

Base Table

105105

Experiment: Size vs. Dimensionality (50
and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.

106106

Experiments on Real World Data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33 seconds and 325MB

to compute

 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

 Longitudinal Study of Vocational Rehab. Data

 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9 seconds and 60MB to

compute

 5-D query with 0 instantiated D: 227ms~2.6 sec.

107

108108

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary

109109

Processing Advanced Queries by
Exploring Data Cube Technology

 Sampling Cube

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling

Cube: A Framework for Statistical OLAP over

Sampling Data”, SIGMOD’08

 Ranking Cube

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k

queries with multi-dimensional selections: The

ranking cube approach. VLDB’06

 Other advanced cubes for processing data and queries

 Stream cube, spatial cube, multimedia cube, text

cube, RFID cube, etc. — to be studied in volume 2

110110

Statistical Surveys and OLAP

 Statistical survey: A popular tool to collect information
about a population based on a sample
 Ex.: TV ratings, US Census, election polls

 A common tool in politics, health, market research,
science, and many more

 An efficient way of collecting information (Data collection
is expensive)

 Many statistical tools available, to determine validity
 Confidence intervals
 Hypothesis tests

 OLAP (multidimensional analysis) on survey data
 highly desirable but can it be done well?

111111

Surveys: Sample vs. Whole
Population

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population

112112

Problems for Drilling in Multidim.
Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be small

when drilling to certain multidimensional space

113113

OLAP on Survey (i.e., Sampling)
Data

Age/Education High-school College Graduate

18

19

20

…

 Semantics of query is unchanged

 Input data has changed

114114

Challenges for OLAP on
Sampling Data

 Computing confidence intervals in OLAP context

 No data?
 Not exactly. No data in subspaces in cube

 Sparse data

 Causes include sampling bias and query selection bias

 Curse of dimensionality
 Survey data can be high dimensional

 Over 600 dimensions in real world example

 Impossible to fully materialize

115115

Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?

Return not only query result but also confidence interval

116116

Confidence Interval

 Confidence interval at :

 x is a sample of data set; is the mean of sample

 tc is the critical t-value, calculated by a look-up

 is the estimated standard error of the mean

 Example: $50,000 ± $3,000 with 95% confidence

 Treat points in cube cell as samples

 Compute confidence interval as traditional sample set

 Return answer in the form of confidence interval

 Indicates quality of query answer

 User selects desired confidence interval

117117

Efficient Computing Confidence Interval Measures

 Efficient computation in all cells in data cube

 Both mean and confidence interval are algebraic

 Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

 Thus one can calculate cells efficiently at more general

cuboids without having to start at the base cuboid each

time

118118

Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?

119119

Boosting Confidence by Query Expansion

 From the example: The queried cell “19-year-old
college students” contains only 2 samples

 Confidence interval is large (i.e., low confidence).
why?

 Small sample size
 High standard deviation with samples

 Small sample sizes can occur at relatively low
dimensional selections

 Collect more data?― expensive!
 Use data in other cells? Maybe, but have to be careful

120120

Intra-Cuboid Expansion: Choice
1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?

121121

Intra-Cuboid Expansion: Choice
2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?

122122

Query Expansion

123

Intra-Cuboid Expansion

 Combine other cells’ data into own to “boost”
confidence

 If share semantic and cube similarity

 Use only if necessary

 Bigger sample size will decrease confidence interval

 Cell segment similarity

 Some dimensions are clear: Age

 Some are fuzzy: Occupation

 May need domain knowledge

 Cell value similarity

 How to determine if two cells’ samples come from
the same population?

 Two-sample t-test (confidence-based)

124124

Inter-Cuboid Expansion

 If a query dimension is

 Not correlated with cube value

 But is causing small sample size by drilling down too

much

 Remove dimension (i.e., generalize to *) and move to a

more general cuboid

 Can use two-sample t-test to determine similarity

between two cells across cuboids

 Can also use a different method to be shown later

125125

Query Expansion Experiments

 Real world sample data: 600 dimensions and
750,000 tuples

 0.05% to simulate “sample” (allows error checking)

126126

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary

127

Ranking Cubes – Efficient
Computation of Ranking queries

 Data cube helps not only OLAP but also ranked search

 (top-k) ranking query: only returns the best k results

according to a user-specified preference, consisting of (1)

a selection condition and (2) a ranking function

 Ex.: Search for apartments with expected price 1000 and
expected square feet 800

 Select top 1 from Apartment
 where City = “LA” and Num_Bedroom = 2
 order by [price – 1000]^2 + [sq feet - 800]^2 asc

 Efficiency question: Can we only search what we need?
 Build a ranking cube on both selection dimensions and

ranking dimensions

128

Sliced Partition

for city=“LA”

Sliced Partition

for BR=2

Ranking Cube: Partition Data on Both
Selection and Ranking Dimensions

One single data

partition as the template

Slice the data partition

by selection conditions

Partition for

all data

129

Materialize Ranking-Cube

tid City BR Price Sq feet Block ID

t1 SEA 1 500 600 5

t2 CLE 2 700 800 5

t3 SEA 1 800 900 2

t4 CLE 3 1000 1000 6

t5 LA 1 1100 200 15

t6 LA 2 1200 500 11

t7 LA 2 1200 560 11

t8 CLE 3 1350 1120 4

Step 1: Partition Data on

Ranking Dimensions

Step 2: Group data by

Selection Dimensions

City

BR

City & BR

3 421

CLE

LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Block-level: {11, 15}

Data-level: {11: t6, t7; 15: t5}

130

Search with Ranking-Cube:
Simultaneously Push Selection and

Ranking

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start

search from here
With ranking-cube:

start search from here

Measure for LA:

{11, 15}

{11: t6,t7; 15:t5}

11

15

Given the bin boundaries,

locate the block with top score

Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

131

Processing Ranking Query: Execution Trace

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-

cube: start search

from here

Measure for LA:

{11, 15}

{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11

4. Retrieve low-level measure for block 11

5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!

132

Ranking Cube: Methodology and Extension

 Ranking cube methodology

 Push selection and ranking simultaneously

 It works for many sophisticated ranking functions

 How to support high-dimensional data?

 Materialize only those atomic cuboids that contain

single selection dimensions

 Uses the idea similar to high-dimensional OLAP

 Achieves low space overhead and high

performance in answering ranking queries with a

high number of selection dimensions

133133

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

134134

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

135

Data Mining in Cube Space

 Data cube greatly increases the analysis bandwidth
 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining
 Using OLAP queries to generate features and targets for

mining, e.g., multi-feature cube
 Using data-mining models as building blocks in a multi-

step mining process, e.g., prediction cube
 Using data-cube computation techniques to speed up

repeated model construction
 Cube-space data mining may require building a

model for each candidate data space
 Sharing computation across model-construction for

different candidates may lead to efficient mining

136

Prediction Cubes

 Prediction cube: A cube structure that stores prediction
models in multidimensional data space and supports
prediction in OLAP manner

 Prediction models are used as building blocks to define
the interestingness of subsets of data, i.e., to answer
which subsets of data indicate better prediction

137

How to Determine the Prediction Power
of an Attribute?

 Ex. A customer table D:

 Two dimensions Z: Time (Month, Year) and Location
(State, Country)

 Two features X: Gender and Salary

 One class-label attribute Y: Valued Customer

 Q: “Are there times and locations in which the value of a
customer depended greatly on the customers gender
(i.e., Gender: predictiveness attribute V)?”

 Idea:

 Compute the difference between the model built on
that using X to predict Y and that built on using X – V
to predict Y

 If the difference is large, V must play an important role
at predicting Y

138

Efficient Computation of Prediction Cubes

 Naïve method: Fully materialize the prediction
cube, i.e., exhaustively build models and evaluate
them for each cell and for each granularity

 Better approach: Explore score function
decomposition that reduces prediction cube
computation to data cube computation

139139

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

140140

Complex Aggregation at Multiple
Granularities: Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries
involving multiple dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the
maximum price in 2010 for each group, and the total sales among
all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the
min and max shelf live, and find the fraction of the total sales due
to tuple that have min shelf life within the set of all max price
tuples

141141

Multidimensional Data Analysis in
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes

142142

Discovery-Driven Exploration of Data Cubes

 Hypothesis-driven

 exploration by user, huge search space

 Discovery-driven (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide

user in the data analysis, at all levels of aggregation

 Exception: significantly different from the value

anticipated, based on a statistical model

 Visual cues such as background color are used to

reflect the degree of exception of each cell

143143

Kinds of Exceptions and their Computation

 Parameters

 SelfExp: surprise of cell relative to other cells at same

level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down

path

 Computation of exception indicator (modeling fitting and

computing SelfExp, InExp, and PathExp values) can be

overlapped with cube construction

 Exception themselves can be stored, indexed and

retrieved like precomputed aggregates

144144

Examples: Discovery-Driven Data Cubes

145145

Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary

146146

Data Cube Technology:
Summary

 Data Cube Computation: Preliminary Concepts

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP with Shell-Fragments

 Processing Advanced Queries by Exploring Data Cube Technology

 Sampling Cubes

 Ranking Cubes

 Multidimensional Data Analysis in Cube Space

 Discovery-Driven Exploration of Data Cubes

 Multi-feature Cubes

 Prediction Cubes

147147

Ref.(I) Data Cube Computation
Methods

 S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S.
Sarawagi. On the computation of multidimensional aggregates. VLDB’96

 D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses.
SIGMOD’97

 K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD’99

 M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries
efficiently. VLDB’98

 J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data
Mining and Knowledge Discovery, 1:29–54, 1997.

 J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures.
SIGMOD’01

 L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data
Cube, VLDB'02

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04
 Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous

multidimensional aggregates. SIGMOD’97
 K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97
 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up

Integration, VLDB'03
 D. Xin, J. Han, Z. Shao, H. Liu, C-Cubing: Efficient Computation of Closed Cubes by Aggregation-Based

Checking, ICDE'06

148148

Ref. (II) Advanced Applications with Data
Cubes

 D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. OLAP
over uncertain and imprecise data. VLDB’05

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A Framework for Statistical
OLAP over Sampling Data”, SIGMOD’08

 C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube: Computing IR measures for
multidimensional text database analysis. ICDM’08

 D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP operations in spatial data
warehouses. SSTD’01

 N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE Trans. Knowledge and Data
Engineering, 12:938–958, 2000.

 T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multidimensional space.
VLDB’09

 T. Wu, D. Xin, and J. Han. ARCube: Supporting ranking aggregate queries in partially
materialized data cubes. SIGMOD’08

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-dimensional
selections: The ranking cube approach. VLDB’06

 J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via
wavelets. CIKM’98

 D. Zhang, C. Zhai, and J. Han. Topic cube: Topic modeling for OLAP on multi-
dimensional text databases. SDM’09

149

Ref. (III) Knowledge Discovery with Data Cubes

 R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

 B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB’05

 B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis:
Predicting global aggregates from local regions. VLDB’06

 Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression
Analysis of Time-Series Data Streams, VLDB'02

 G. Dong, J. Han, J. Lam, J. Pei, K. Wang. Mining Multi-dimensional Constrained
Gradients in Data Cubes. VLDB’ 01

 R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-
structural databases. PODS’05

 J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–
107, 1998

 T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association
rules. Data Mining & Knowledge Discovery, 6:219–258, 2002.

 R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and
Knowledge Discovery, 15:29–54, 2007.

 K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple
granularities. EDBT'98

 S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data
cubes. EDBT'98

 G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01

1505/30/2019 Data Mining: Concepts and Techniques 150

151151

Chapter 5: Data Cube Technology

 Efficient Methods for Data Cube Computation
 Preliminary Concepts and General Strategies for Cube Computation
 Multiway Array Aggregation for Full Cube Computation
 BUC: Computing Iceberg Cubes from the Apex Cuboid Downward
 H-Cubing: Exploring an H-Tree Structure
 Star-cubing: Computing Iceberg Cubes Using a Dynamic Star-tree

Structure
 Precomputing Shell Fragments for Fast High-Dimensional OLAP

 Data Cubes for Advanced Applications
 Sampling Cubes: OLAP on Sampling Data
 Ranking Cubes: Efficient Computation of Ranking Queries

 Knowledge Discovery with Data Cubes
 Discovery-Driven Exploration of Data Cubes
 Complex Aggregation at Multiple Granularity: Multi-feature Cubes
 Prediction Cubes: Data Mining in Multi-Dimensional Cube Space

 Summary

152152

H-Cubing: Using H-Tree
Structure

 Bottom-up computation

 Exploring an H-tree

structure

 If the current

computation of an H-tree

cannot pass min_sup, do

not proceed further

(pruning)

 No simultaneous

aggregation

 all

 A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

153153

H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …

… …

Header

table

154154

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”

155155

Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link

Edu. Sum:2285 …

Hhd. …

Bus. …

… …

Jan. …

Feb. …

Mar. …

… …

Tor. …

Van. …

Mont. …

… …

1. Roll up quant-info
2. Compute cells involving

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes
top-k avg threshold, so does its parents.
No binning is needed!

156156

Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.

