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What is a Data Warehouse?

 Defined in many different ways, but not rigorously.

 A decision support database that is maintained separately from 

the organization’s operational database

 Support information processing by providing a solid platform of 

consolidated, historical data for analysis.

 “A data warehouse is a subject-oriented, integrated, time-variant, 

and nonvolatile collection of data in support of management’s 

decision-making process.”—W. H. Inmon

 Data warehousing:

 The process of constructing and using data warehouses
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Data Warehouse—Subject-
Oriented

 Organized around major subjects, such as customer, 

product, sales

 Focusing on the modeling and analysis of data for 

decision makers, not on daily operations or transaction 

processing

 Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in 

the decision support process
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Data Warehouse—Integrated

 Constructed by integrating multiple, heterogeneous data 
sources
 relational databases, flat files, on-line transaction 

records
 Data cleaning and data integration techniques are 

applied.
 Ensure consistency in naming conventions, encoding 

structures, attribute measures, etc. among different 
data sources

 E.g., Hotel price: currency, tax, breakfast covered, etc.

 When data is moved to the warehouse, it is 
converted.  
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Data Warehouse—Time Variant

 The time horizon for the data warehouse is significantly 

longer than that of operational systems

 Operational database: current value data

 Data warehouse data: provide information from a 

historical perspective (e.g., past 5-10 years)

 Every key structure in the data warehouse

 Contains an element of time, explicitly or implicitly

 But the key of operational data may or may not 

contain “time element”
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Data Warehouse—Nonvolatile

 A physically separate store of data transformed from the 

operational environment

 Operational update of data does not occur in the data 

warehouse environment

 Does not require transaction processing, recovery, 

and concurrency control mechanisms

 Requires only two operations in data accessing: 

 initial loading of data and access of data
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OLTP vs. OLAP

 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 

detailed, flat relational 

isolated 

historical,  

summarized, multidimensional 

integrated, consolidated 

usage repetitive ad-hoc 

access read/write 

index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
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Why a Separate Data Warehouse?

 High performance for both systems

 DBMS— tuned for OLTP: access methods, indexing, concurrency 

control, recovery

 Warehouse—tuned for OLAP: complex OLAP queries, 

multidimensional view, consolidation

 Different functions and different data:

 missing data: Decision support requires historical data which 

operational DBs do not typically maintain

 data consolidation:  DS requires consolidation (aggregation, 

summarization) of data from heterogeneous sources

 data quality: different sources typically use inconsistent data 

representations, codes and formats which have to be reconciled

 Note: There are more and more systems which perform OLAP 

analysis directly on relational databases
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Data Warehouse: A Multi-Tiered Architecture

Data
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Extract

Transform

Load

Refresh

OLAP 

Engine

Analysis

Query

Reports
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Monitor

&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational 
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Other

sources

Data Storage

OLAP Server
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Three Data Warehouse Models

 Enterprise warehouse

 collects all of the information about subjects spanning 

the entire organization

 Data Mart

 a subset of corporate-wide data that is of value to a 

specific groups of users.  Its scope is confined to 

specific, selected groups, such as marketing data mart

 Independent vs. dependent (directly from warehouse) data mart

 Virtual warehouse

 A set of views over operational databases

 Only some of the possible summary views may be 

materialized
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Extraction, Transformation, and Loading 
(ETL)

 Data extraction

 get data from multiple, heterogeneous, and external 
sources

 Data cleaning

 detect errors in the data and rectify them when possible

 Data transformation

 convert data from legacy or host format to warehouse 
format

 Load

 sort, summarize, consolidate, compute views, check 
integrity, and build indicies and partitions

 Refresh

 propagate the updates from the data sources to the 
warehouse
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Metadata Repository

 Meta data is the data defining warehouse objects.  It stores:

 Description of the structure of the data warehouse

 schema, view, dimensions, hierarchies, derived data defn, data 

mart locations and contents

 Operational meta-data

 data lineage (history of migrated data and transformation path), 

currency of data (active, archived, or purged), monitoring 

information (warehouse usage statistics, error reports, audit trails)

 The algorithms used for summarization

 The mapping from operational environment to the data warehouse

 Data related to system performance

 warehouse schema, view and derived data definitions

 Business data

 business terms and definitions, ownership of data, charging policies
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From Tables and Spreadsheets to 
Data Cubes

 A data warehouse is based on a multidimensional data model

which views data in the form of a data cube

 A data cube, such as sales, allows data to be modeled and viewed in 

multiple dimensions

 Dimension tables, such as item (item_name, brand, type), or

time(day, week, month, quarter, year) 

 Fact table contains measures (such as dollars_sold) and keys 

to each of the related dimension tables

 In data warehousing literature, an n-D base cube is called a base 

cuboid. The top most 0-D cuboid, which holds the highest-level of 

summarization, is called the apex cuboid.  The lattice of cuboids 

forms a data cube.
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Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid
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Conceptual Modeling of Data 
Warehouses

 Modeling data warehouses: dimensions & measures

 Star schema: A fact table in the middle connected to a 

set of dimension tables 

 Snowflake schema:  A refinement of star schema 

where some dimensional hierarchy is normalized into a 

set of smaller dimension tables, forming a shape 

similar to snowflake

 Fact constellations:  Multiple fact tables share 

dimension tables, viewed as a collection of stars, 

therefore called galaxy schema or fact constellation 
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Example of Star Schema
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Example of Snowflake Schema
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Example of Fact 
Constellation
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A Concept Hierarchy: 
Dimension (location)

all
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MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...
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region

office

country

TorontoFrankfurtcity
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Data Cube Measures: Three Categories

 Distributive: if the result derived by applying the function 

to n aggregate values is the same as that derived by 

applying the function on all the data without partitioning

 E.g., count(), sum(), min(), max()

 Algebraic: if it can be computed by an algebraic function 

with M arguments (where M is a bounded integer), each of 

which is obtained by applying a distributive aggregate 

function

 E.g., avg(), min_N(), standard_deviation()

 Holistic: if there is no constant bound on the storage size 

needed to describe a subaggregate.

 E.g., median(), mode(), rank()
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View of Warehouses and 
Hierarchies

Specification of hierarchies

 Schema hierarchy

day < {month < 

quarter; week} < year

 Set_grouping hierarchy

{1..10} < inexpensive
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Multidimensional Data

 Sales volume as a function of product, month, 
and region

P
ro

d
u
ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day
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A Sample Data Cube

Total annual sales

of  TVs in U.S.A.Date
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Cuboids Corresponding to the 
Cube

all

product date country

product,date product,country date, country

product, date, country

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid
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Typical OLAP Operations

 Roll up (drill-up): summarize data

 by climbing up hierarchy or by dimension reduction
 Drill down (roll down): reverse of roll-up

 from higher level summary to lower level summary or 
detailed data, or introducing new dimensions

 Slice and dice: project and select
 Pivot (rotate):

 reorient the cube, visualization, 3D to series of 2D planes
 Other operations

 drill across: involving (across) more than one fact table
 drill through: through the bottom level of the cube to its 

back-end relational tables (using SQL)
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Fig. 3.10 Typical OLAP 
Operations
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A Star-Net Query Model

Shipping Method

AIR-EXPRESS

TRUCK
ORDER

Customer Orders

CONTRACTS

Customer

Product

PRODUCT GROUP

PRODUCT LINE

PRODUCT ITEM

SALES PERSON

DISTRICT

DIVISION

OrganizationPromotion

CITY

COUNTRY

REGION

Location

DAILYQTRLYANNUALY
Time

Each circle is 
called a footprint
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Browsing a Data Cube

 Visualization

 OLAP capabilities

 Interactive manipulation
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Design of Data Warehouse: A 
Business Analysis Framework

 Four views regarding the design of a data warehouse 

 Top-down view

 allows selection of the relevant information necessary for the 

data warehouse

 Data source view

 exposes the information being captured, stored, and 

managed by operational systems

 Data warehouse view

 consists of fact tables and dimension tables

 Business query view

 sees the perspectives of data in the warehouse from the view 

of end-user
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Data Warehouse Design 
Process 

 Top-down, bottom-up approaches or a combination of both

 Top-down: Starts with overall design and planning (mature)

 Bottom-up: Starts with experiments and prototypes (rapid)

 From software engineering point of view

 Waterfall: structured and systematic analysis at each step before 

proceeding to the next

 Spiral:  rapid generation of increasingly functional systems, short 

turn around time, quick turn around

 Typical data warehouse design process

 Choose a business process to model, e.g., orders, invoices, etc.

 Choose the grain (atomic level of data) of the business process

 Choose the dimensions that will apply to each fact table record

 Choose the measure that will populate each fact table record



33

Data Warehouse 
Development: A 

Recommended Approach

Define a high-level corporate data model

Data 

Mart

Data 

Mart

Distribute

d Data 

Marts

Multi-Tier 

Data 

Warehouse

Enterpris

e Data 

Warehous

e
Model refinementModel refinement
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Data Warehouse Usage

 Three kinds of data warehouse applications

 Information processing

 supports querying, basic statistical analysis, and reporting 

using crosstabs, tables, charts and graphs

 Analytical processing

 multidimensional analysis of data warehouse data

 supports basic OLAP operations, slice-dice, drilling, pivoting

 Data mining

 knowledge discovery from hidden patterns 

 supports associations, constructing analytical models, 

performing classification and prediction, and presenting the 

mining results using visualization tools
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From On-Line Analytical Processing 
(OLAP) 

to On Line Analytical Mining (OLAM)

 Why online analytical mining?
 High quality of data in data warehouses

 DW contains integrated, consistent, cleaned data
 Available information processing structure surrounding 

data warehouses
 ODBC, OLEDB, Web accessing, service facilities, 

reporting and OLAP tools
 OLAP-based exploratory data analysis

 Mining with drilling, dicing, pivoting, etc.
 On-line selection of data mining functions

 Integration and swapping of multiple mining 
functions, algorithms, and tasks
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Efficient Data Cube 
Computation

 Data cube can be viewed as a lattice of cuboids  

 The bottom-most cuboid is the base cuboid

 The top-most cuboid (apex) contains only one cell

 How many cuboids in an n-dimensional cube with L 

levels?

 Materialization of data cube

 Materialize every (cuboid) (full materialization), 

none (no materialization), or some (partial 

materialization)

 Selection of which cuboids to materialize

 Based on size, sharing, access frequency, etc.

)1
1
( 




n

i
i

LT
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The “Compute Cube” Operator

 Cube definition and computation in DMQL

define cube sales [item, city, year]: sum (sales_in_dollars)

compute cube sales

 Transform it into a SQL-like language (with a new operator cube
by, introduced by Gray et al.’96)

SELECT item, city, year, SUM (amount)

FROM SALES

CUBE BY item, city, year
 Need compute the following Group-Bys

(date, product, customer),
(date,product),(date, customer), (product, customer),
(date), (product), (customer)
()

(item)(city)

()

(year)

(city, item) (city, year) (item, year)

(city, item, year)
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Indexing OLAP Data: Bitmap 
Index

 Index on a particular column
 Each value in the column has a bit vector: bit-op is fast
 The length of the bit vector: # of records in the base table
 The i-th bit is set if the i-th row of the base table has the value for 

the indexed column
 not suitable for high cardinality domains
 A recent bit compression technique, Word-Aligned Hybrid (WAH), 

makes it work for high cardinality domain as well [Wu, et al. TODS’06]

Cust Region Type

C1 Asia Retail

C2 Europe Dealer

C3 Asia Dealer

C4 America Retail

C5 Europe Dealer

RecID Retail Dealer

1 1 0

2 0 1

3 0 1

4 1 0

5 0 1

RecIDAsia Europe America

1 1 0 0

2 0 1 0

3 1 0 0

4 0 0 1

5 0 1 0

Base table Index on Region Index on Type
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Indexing OLAP Data: Join Indices

 Join index: JI(R-id, S-id) where R (R-id, …)  S 
(S-id, …)

 Traditional indices map the values to a list of 
record ids
 It materializes relational join in JI file and 

speeds up relational join 
 In data warehouses, join index relates the values 

of the dimensions of a start schema to rows in 
the fact table.
 E.g. fact table: Sales and two dimensions city

and product
 A join index on city maintains for each 

distinct city a list of R-IDs of the tuples 
recording the Sales in the city 

 Join indices can span multiple dimensions
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Efficient Processing OLAP Queries

 Determine which operations should be performed on the available cuboids

 Transform drill, roll, etc. into corresponding SQL and/or OLAP operations, 

e.g., dice = selection + projection

 Determine which materialized cuboid(s) should be selected for OLAP op.

 Let the query to be processed be on {brand, province_or_state} with the 

condition “year = 2004”, and there are 4 materialized cuboids available:

1) {year, item_name, city}  

2) {year, brand, country}

3) {year, brand, province_or_state}

4) {item_name, province_or_state}  where year = 2004

Which should be selected to process the query?

 Explore indexing structures and compressed vs. dense array structs in MOLAP
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OLAP Server Architectures

 Relational OLAP (ROLAP)

 Use relational or extended-relational DBMS to store and manage 

warehouse data and OLAP middle ware

 Include optimization of DBMS backend, implementation of 

aggregation navigation logic, and additional tools and services

 Greater scalability

 Multidimensional OLAP (MOLAP)

 Sparse array-based multidimensional storage engine 

 Fast indexing to pre-computed summarized data

 Hybrid OLAP (HOLAP) (e.g., Microsoft SQLServer)

 Flexibility, e.g., low level: relational, high-level: array

 Specialized SQL servers (e.g., Redbricks) 

 Specialized support for SQL queries over star/snowflake schemas
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Attribute-Oriented 
Induction

 Proposed in 1989 (KDD ‘89 workshop)

 Not confined to categorical data nor particular measures

 How it is done?

 Collect the task-relevant data (initial relation) using a 

relational database query

 Perform generalization by attribute removal or 

attribute generalization

 Apply aggregation by merging identical, generalized 

tuples and accumulating their respective counts

 Interaction with users for knowledge presentation
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Attribute-Oriented Induction: An 
Example

Example:  Describe general characteristics of graduate 

students in the University database

 Step 1. Fetch relevant set of data using an SQL 

statement, e.g.,

Select * (i.e., name, gender, major, birth_place, 

birth_date, residence, phone#, gpa)

from student

where student_status in {“Msc”, “MBA”, “PhD” }

 Step 2. Perform attribute-oriented induction

 Step 3. Present results in generalized relation, cross-tab, 

or rule forms
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Class Characterization: An Example

Name Gender Major Birth-Place Birth_date Residence Phone # GPA

Jim

Woodman

  M   CS Vancouver,BC,

Canada

  8-12-76 3511 Main St.,

Richmond

687-4598 3.67

Scott

Lachance

  M   CS Montreal, Que,

Canada

28-7-75 345 1st Ave.,

Richmond

253-9106 3.70

Laura Lee

…

  F

…

Physics

…

Seattle, WA, USA

…
25-8-70

…

125 Austin Ave.,

Burnaby

…

420-5232

…

3.83

…

Removed Retained Sci,Eng,

Bus
Country Age range City Removed Excl,

VG,..

Gender Major Birth_region Age_range Residence GPA Count

    M Science    Canada     20-25 Richmond Very-good     16

    F Science    Foreign     25-30 Burnaby Excellent     22

   …      …        …        …      …        …     …

        Birth_Region

Gender

Canada Foreign Total

              M     16       14    30

              F     10       22    32

           Total     26       36    62

Prime 

Generalized 

Relation

Initial 

Relation
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Basic Principles of Attribute-Oriented 
Induction

 Data focusing: task-relevant data, including dimensions, 

and the result is the initial relation

 Attribute-removal: remove attribute A if there is a large set 

of distinct values for A but (1) there is no generalization 

operator on A, or (2) A’s higher level concepts are 

expressed in terms of other attributes

 Attribute-generalization: If there is a large set of distinct 

values for A, and there exists a set of generalization 

operators on A, then select an operator and generalize A

 Attribute-threshold control: typical 2-8, specified/default

 Generalized relation threshold control: control the final 

relation/rule size
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Attribute-Oriented Induction: Basic 
Algorithm 

 InitialRel: Query processing of task-relevant data, deriving 

the initial relation.

 PreGen: Based on the analysis of the number of distinct 

values in each attribute, determine generalization plan for 

each attribute: removal? or how high to generalize?

 PrimeGen: Based on the PreGen plan, perform 

generalization to the right level to derive a “prime 

generalized relation”, accumulating the counts.

 Presentation: User interaction: (1) adjust levels by drilling, 

(2) pivoting, (3) mapping into rules, cross tabs, 

visualization presentations.
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Presentation of Generalized 
Results

 Generalized relation: 

 Relations where some or all attributes are generalized, with counts 

or other aggregation values accumulated.

 Cross tabulation:

 Mapping results into cross tabulation form (similar to contingency 

tables). 

 Visualization techniques:

 Pie charts, bar charts, curves, cubes, and other visual forms.

 Quantitative characteristic rules:

 Mapping generalized result into characteristic rules with quantitative 

information associated with it, e.g.,

.%]47:["")(_%]53:["")(_

)()(

tforeignxregionbirthtCanadaxregionbirth

xmalexgrad




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Mining Class Comparisons

 Comparison: Comparing two or more classes

 Method:

 Partition the set of relevant data into the target class and the 

contrasting class(es) 

 Generalize both classes to the same high level concepts

 Compare tuples with the same high level descriptions

 Present for every tuple its description and two measures

 support - distribution within single class

 comparison - distribution between classes

 Highlight the tuples with strong discriminant features 

 Relevance Analysis:

 Find attributes (features) which best distinguish different classes
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Concept Description vs. Cube-Based 
OLAP

 Similarity: 
 Data generalization
 Presentation of data summarization at multiple levels of 

abstraction
 Interactive drilling, pivoting, slicing and dicing

 Differences:
 OLAP has systematic preprocessing, query independent, 

and can drill down to rather low level
 AOI has automated desired level allocation, and may 

perform dimension relevance analysis/ranking when 
there are many relevant dimensions

 AOI works on the data which are not in relational forms
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Summary

 Data warehousing: A multi-dimensional model of a data warehouse

 A data cube consists of dimensions & measures

 Star schema, snowflake schema, fact constellations

 OLAP operations: drilling, rolling, slicing, dicing and pivoting

 Data Warehouse Architecture, Design, and Usage

 Multi-tiered architecture

 Business analysis design framework

 Information processing, analytical processing, data mining, OLAM (Online 

Analytical Mining)

 Implementation: Efficient computation of data cubes

 Partial vs. full vs. no materialization

 Indexing OALP data: Bitmap index and join index

 OLAP query processing 

 OLAP servers: ROLAP, MOLAP, HOLAP

 Data generalization: Attribute-oriented induction
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Chapter 4: Data Warehousing and On-line 
Analytical Processing

 Data Warehouse: Basic Concepts

 (a) What Is a Data Warehouse?

 (b) Data Warehouse: A Multi-Tiered Architecture

 (c) Three Data Warehouse Models: Enterprise Warehouse, Data Mart, ad Virtual Warehouse

 (d) Extraction, Transformation and Loading
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 Data Warehouse Modeling: Data Cube and OLAP

 (a) Cube: A Lattice of Cuboids

 (b) Conceptual Modeling of Data Warehouses

 (c) Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Databases

 (d) Dimensions: The Role of Concept Hierarchy

 (e) Measures: Their Categorization and Computation

 (f) Cube Definitions in Database systems

 (g) Typical OLAP Operations

 (h) A Starnet Query Model for Querying Multidimensional Databases

 Data Warehouse Design and Usage

 (a) Design of Data Warehouses: A Business Analysis Framework

 (b) Data Warehouses Design Processes

 (c) Data Warehouse Usage

 (d) From On-Line Analytical Processing to On-Line Analytical Mining

 Data Warehouse Implementation

 (a) Efficient Data Cube Computation: Cube Operation, Materialization of Data Cubes, and Iceberg Cubes

 (b) Indexing OLAP Data: Bitmap Index and Join Index

 (c) Efficient Processing of OLAP Queries

 (d) OLAP Server Architectures: ROLAP vs. MOLAP vs. HOLAP

 Data Generalization by Attribute-Oriented Induction

 (a) Attribute-Oriented Induction for Data Characterization

 (b) Efficient Implementation of Attribute-Oriented Induction

 (c) Attribute-Oriented Induction for Class Comparisons

 (d) Attribute-Oriented Induction vs. Cube-Based OLAP

 Summary
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Compression of Bitmap Indices

 Bitmap indexes must be compressed to reduce I/O costs 

and minimize CPU usage—majority of the bits are 0’s

 Two compression schemes:

 Byte-aligned Bitmap Code (BBC) 

 Word-Aligned Hybrid (WAH) code

 Time and space required to operate on compressed 

bitmap is proportional to the total size of the bitmap

 Optimal on attributes of low cardinality as well as those of 

high cardinality.

 WAH out performs BBC by about a factor of two
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data 

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary
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Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplierc

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
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Data Cube: A Lattice of Cuboids

 Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
1. (9/15, milk, Urbana, Dairy_land) 
2. (9/15, milk, Urbana, *) 
3. (*, milk, Urbana, *) 
4. (*, milk, Urbana, *)
5. (*, milk, Chicago, *)
6. (*, milk, *, *) 

all

time,item

time,item,location

time, item, location, supplier

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D(base) cuboid
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Cube Materialization: 
Full Cube vs. Iceberg Cube

 Full cube vs. iceberg cube
compute cube sales iceberg as

select month, city, customer group, count(*)

from salesInfo

cube by month, city, customer group

having count(*) >= min support

 Computing only the cuboid cells whose measure satisfies the 
iceberg condition 

 Only a small portion of cells may be “above the water’’ in a 
sparse cube

 Avoid explosive growth: A cube with 100 dimensions

 2 base cells: (a1, a2, …., a100), (b1, b2, …, b100)  

 How many aggregate cells if “having count >= 1”? 

 What about “having count >= 2”?

iceberg 
condition
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Iceberg Cube, Closed Cube & Cube Shell

 Is iceberg cube good enough?

 2 base cells:  {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

 How many cells will the iceberg cube have if having count(*) >= 

10? Hint: A huge but tricky number!

 Close cube:

 Closed cell c: if there exists no cell d, s.t. d is a descendant of c, 

and d has the same measure value as c.

 Closed cube: a cube consisting of only closed cells

 What is the closed cube of the above base cuboid?  Hint: only 3 

cells

 Cube Shell

 Precompute only the cuboids involving a small # of dimensions, 

e.g., 3

 More dimension combinations will need to be computed on the fly

For (A1, A2, … A10), how many combinations to compute?
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Roadmap for Efficient Computation

 General cube computation heuristics (Agarwal et al.’96)

 Computing full/iceberg cubes: 3 methodologies 

 Bottom-Up: Multi-Way array aggregation (Zhao, Deshpande & 

Naughton, SIGMOD’97) 

 Top-down: 

 BUC (Beyer & Ramarkrishnan, SIGMOD’99)

 H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)

 Integrating Top-Down and Bottom-Up: 

 Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

 High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04)

 Computing alternative kinds of cubes: 

 Partial cube, closed cube, approximate cube, etc.
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General Heuristics (Agarwal et al. VLDB’96)

 Sorting, hashing, and grouping operations are applied to the dimension 

attributes in order to reorder and cluster related tuples

 Aggregates may be computed from previously computed aggregates, 

rather than from the base fact table

 Smallest-child: computing a cuboid from the smallest, previously 

computed cuboid

 Cache-results: caching results of a cuboid from which other 

cuboids are computed to reduce disk I/Os

 Amortize-scans: computing as many as possible cuboids at the 

same time to amortize disk reads

 Share-sorts: sharing sorting costs cross multiple cuboids when 

sort-based method is used

 Share-partitions: sharing the partitioning cost across multiple 

cuboids when hash-based algorithms are used
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data 

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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Multi-Way Array Aggregation

 Array-based “bottom-up” algorithm

 Using multi-dimensional chunks

 No direct tuple comparisons

 Simultaneous aggregation on multiple 

dimensions

 Intermediate aggregate values are re-

used for computing ancestor cuboids

 Cannot do Apriori pruning: No iceberg 

optimization
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Multi-way Array Aggregation for Cube 
Computation (MOLAP)

 Partition arrays into chunks (a small subcube which fits in memory). 

 Compressed sparse array addressing: (chunk_id, offset)

 Compute aggregates in “multiway” by visiting cube cells in the order 

which minimizes the # of times to visit each cell, and reduces 

memory access and storage cost.

What is the best 

traversing order 

to do multi-way 

aggregation?

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0

a2 a3

C

B

44
28 56

40
24 52

36
20

60
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Multi-way Array Aggregation for 
Cube Computation (3-D to 2-D)

all

A B

AB

ABC

AC BC

C

 The best order is 
the one that 
minimizes the 
memory 
requirement and 
reduced I/Os
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Multi-way Array Aggregation for Cube 
Computation (2-D to 1-D)
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Multi-Way Array Aggregation for Cube 
Computation (Method Summary)

 Method: the planes should be sorted and computed 

according to their size in ascending order

 Idea: keep the smallest plane in the main memory, 

fetch and compute only one chunk at a time for the 

largest plane

 Limitation of the method: computing well only for a small 

number of dimensions

 If there are a large number of dimensions, “top-down” 

computation and iceberg cube computation methods 

can be explored
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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Bottom-Up Computation (BUC)

 BUC (Beyer & Ramakrishnan, 
SIGMOD’99) 

 Bottom-up cube computation 
(Note: top-down in our view!)

 Divides dimensions into partitions 
and facilitates iceberg pruning
 If a partition does not satisfy 

min_sup, its descendants can 
be pruned

 If minsup = 1 compute full 
CUBE!

 No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB
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BUC: Partitioning

 Usually, entire data set                                 
can’t fit in main memory

 Sort distinct values
 partition into blocks that fit

 Continue processing
 Optimizations

 Partitioning
 External Sorting, Hashing, Counting Sort

 Ordering dimensions to encourage pruning
 Cardinality, Skew, Correlation

 Collapsing duplicates
 Can’t do holistic aggregates anymore!
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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Star-Cubing: An Integrating Method

 D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes 

by Top-Down and Bottom-Up Integration, VLDB'03

 Explore shared dimensions

 E.g., dimension A is the shared dimension of ACD and AD

 ABD/AB means cuboid ABD has shared dimensions AB

 Allows for shared computations

 e.g., cuboid AB is computed simultaneously as ABD
C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D

ABCD/all

 Aggregate in a top-down 

manner but with the bottom-up 

sub-layer underneath which will 

allow Apriori pruning

 Shared dimensions grow in 

bottom-up fashion
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Iceberg Pruning in Shared Dimensions

 Anti-monotonic property of shared dimensions

 If the measure is anti-monotonic, and if the 

aggregate value on a shared dimension does not 

satisfy the iceberg condition, then all the cells 

extended from this shared dimension cannot 

satisfy the condition either

 Intuition: if we can compute the shared dimensions 

before the actual cuboid, we can use them to do 

Apriori pruning

 Problem: how to prune while still aggregate 

simultaneously on multiple dimensions?
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Cell Trees

 Use a tree structure similar 

to H-tree to represent 

cuboids

 Collapses common prefixes 

to save memory

 Keep count at node

 Traverse the tree to retrieve 

a particular tuple
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Star Attributes and Star Nodes

 Intuition: If a single-dimensional  

aggregate on an attribute value p

does not satisfy the iceberg 

condition, it is useless to distinguish 

them during the iceberg 

computation

 E.g., b2, b3, b4, c1, c2, c4, d1, d2, 

d3 

 Solution: Replace such attributes by 

a *.  Such attributes are star 

attributes, and the corresponding 

nodes in the cell tree are star nodes

A B C D Count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1
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Example: Star Reduction

 Suppose minsup = 2

 Perform one-dimensional 

aggregation.  Replace attribute 

values whose count < 2 with *.  And 

collapse all *’s together

 Resulting table has all such 

attributes replaced with the star-

attribute

 With regards to the iceberg 

computation, this new table is a 

lossless compression of the original 

table

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2

A B C D Count

a1 b1 * * 1

a1 b1 * * 1

a1 * * * 1

a2 * c3 d4 1

a2 * c3 d4 1
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Star Tree

 Given the new compressed 

table, it is possible to 

construct the corresponding 

cell tree—called star tree

 Keep a star table at the side 

for easy lookup of star 

attributes

 The star tree is a lossless 

compression of the original 

cell tree

A B C D Count

a1 b1 * * 2

a1 * * * 1

a2 * c3 d4 2
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Star-Cubing Algorithm—DFS on Lattice 
Tree

all

A B/B C/C

AC/AC BC/BC

ABC/ABC ABD/AB ACD/A BCD

AD/A BD/B CD

D/D

ABCD

/A

AB/AB

BCD: 51

b*: 33 b1: 26

c*: 27c3: 211c*: 14

d*: 15 d4: 212 d*: 28

root: 5

a1: 3 a2: 2

b*: 2b1: 2b*: 1

d*: 1

c*: 1

d*: 2

c*: 2

 d4: 2

c3: 2
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Multi-Way Aggregation
ABC/ABCABD/ABACD/ABCD

ABCD
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Star-Cubing Algorithm—DFS on Star-Tree
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Multi-Way Star-Tree 
Aggregation

 Start depth-first search at the root of the base star tree

 At each new node in the DFS, create corresponding star 

tree that are descendents of the current tree according to 

the integrated traversal ordering 

 E.g., in the base tree, when DFS reaches a1, the 

ACD/A tree is created

 When DFS reaches b*, the ABD/AD tree is created

 The counts in the base tree are carried over to the new 

trees
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Multi-Way Aggregation (2)

 When DFS reaches a leaf node (e.g., d*), start 

backtracking

 On every backtracking branch, the count in the 

corresponding trees are output, the tree is destroyed, 

and the node in the base tree is destroyed

 Example

 When traversing from d* back to c*, the 

a1b*c*/a1b*c* tree is output and destroyed

 When traversing from c* back to b*, the 

a1b*D/a1b* tree is output and destroyed

 When at b*, jump to b1 and repeat similar process
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Data Cube Computation Methods

 Multi-Way Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP
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The Curse of Dimensionality

 None of the previous cubing method can handle high 
dimensionality!

 A database of 600k tuples.  Each dimension has cardinality 
of 100 and zipf of 2.



9292

Motivation of High-D OLAP

 X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: 
A Minimal Cubing Approach, VLDB'04

 Challenge to current cubing methods:

 The “curse of dimensionality’’ problem

 Iceberg cube and compressed cubes: only delay the 
inevitable explosion

 Full materialization: still significant overhead in 
accessing results on disk

 High-D OLAP is needed in applications

 Science and engineering analysis

 Bio-data analysis: thousands of genes

 Statistical surveys: hundreds of variables
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Fast High-D OLAP with Minimal Cubing

 Observation: OLAP occurs only on a small subset of 

dimensions at a time

 Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while 

retaining inverted indices or value-list indices

3. Given the pre-computed fragment cubes, 

dynamically compute cube cells of the high-

dimensional data cube online
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Properties of Proposed Method

 Partitions the data vertically

 Reduces high-dimensional cube into a set of lower 

dimensional cubes

 Online re-construction of original high-dimensional space

 Lossless reduction

 Offers tradeoffs between the amount of pre-processing 

and the speed of online computation
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Example Computation

 Let the cube aggregation function be count

 Divide the 5 dimensions into 2 shell fragments: 

 (A, B, C) and (D, E)

tid A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3
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1-D Inverted Indices

 Build traditional invert index or RID list

Attribute Value TID List List Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1
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Shell Fragment Cubes: Ideas

 Generalize the 1-D inverted indices to multi-dimensional 
ones in the data cube sense

 Compute all cuboids for data cubes ABC and DE while 
retaining the inverted indices

 For example, shell 
fragment cube ABC 
contains 7 cuboids:

 A, B, C

 AB, AC, BC

 ABC

 This completes the offline 
computation stage

111 2 3    1 4 5a1 b1

04 5    2 3a2 b2

24 54 5    1 4 5a2 b1

22 31 2 3    2 3a1 b2

List SizeTID ListIntersectionCell




















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Shell Fragment Cubes: Size and 
Design

 Given a database of T tuples, D dimensions, and F shell 

fragment size, the fragment cubes’ space requirement is:

 For F < 5, the growth is sub-linear

 Shell fragments do not have to be disjoint

 Fragment groupings can be arbitrary to allow for 

maximum online performance

 Known common combinations (e.g.,<city, state>) 

should be grouped together.

 Shell fragment sizes can be adjusted for optimal balance 

between offline and online computation



O T
D

F







(2F 1)










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ID_Measure Table

 If measures other than count are present, store in 
ID_measure table separate from the shell fragments

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30
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The Frag-Shells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments 

(P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.
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Frag-Shells (2)

A B C D E F …

ABC
Cube

DEF
Cube

D Cuboid

EF Cuboid

DE Cuboid

Cell Tuple-ID List

d1 e1 {1, 3, 8, 9}

d1 e2 {2, 4, 6, 7}

d2 e1 {5, 10}

… …

Dimensions
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Online Query Computation: Query

 A query has the general form

 Each ai has 3 possible values

1. Instantiated value

2. Aggregate * function

3. Inquire ? function

 For example,                                returns a 2-D 

data cube.



a1,a2, ,an :M



3 ? ? * 1:count
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Online Query Computation: Method

 Given the fragment cubes, process a query as 

follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each 

fragment from the fragment cube

3. Intersect the TID lists from each fragment to 

construct instantiated base table

4. Compute the data cube using the base table with 

any cubing algorithm
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Online Query Computation: Sketch

A B C D E F G H I J K L M N …

Online

Cube

Instantiated 

Base Table
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Experiment: Size vs. Dimensionality (50 
and 100 cardinality)

 (50-C): 106 tuples, 0 skew, 50 cardinality, fragment size 3.

 (100-C): 106 tuples, 2 skew, 100 cardinality, fragment size 2.
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Experiments on Real World Data

 UCI Forest CoverType data set

 54 dimensions, 581K tuples

 Shell fragments of size 2 took 33 seconds and 325MB 

to compute

 3-D subquery with 1 instantiate D: 85ms~1.4 sec.

 Longitudinal Study of Vocational Rehab. Data

 24 dimensions, 8818 tuples

 Shell fragments of size 3 took 0.9 seconds and 60MB to 

compute

 5-D query with 0 instantiated D: 227ms~2.6 sec.
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube 

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary
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Processing Advanced Queries by 
Exploring Data Cube Technology

 Sampling Cube

 X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling 

Cube: A Framework for Statistical OLAP over 

Sampling Data”, SIGMOD’08

 Ranking Cube

 D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k 

queries with multi-dimensional selections: The 

ranking cube approach. VLDB’06

 Other advanced cubes for processing data and queries

 Stream cube, spatial cube, multimedia cube, text 

cube, RFID cube, etc. — to be studied in volume 2
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Statistical Surveys and OLAP

 Statistical survey: A popular tool to collect information 
about a population based on a sample
 Ex.: TV ratings, US Census, election polls

 A common tool in politics, health, market research, 
science, and many more

 An efficient way of collecting information (Data collection 
is expensive)

 Many statistical tools available, to determine validity
 Confidence intervals
 Hypothesis tests

 OLAP (multidimensional analysis) on survey data
 highly desirable but can it be done well?
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Surveys: Sample vs. Whole 
Population 

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population
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Problems for Drilling in Multidim. 
Space

Age\Education High-school College Graduate

18

19

20

…

Data is only a sample of population but samples could be small 

when drilling to certain multidimensional space
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OLAP on Survey (i.e., Sampling) 
Data

Age/Education High-school College Graduate

18

19

20

…

 Semantics of query is unchanged

 Input data has changed
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Challenges for OLAP on 
Sampling Data

 Computing confidence intervals in OLAP context

 No data?
 Not exactly.  No data in subspaces in cube

 Sparse data

 Causes include sampling bias and query selection bias 

 Curse of dimensionality
 Survey data can be high dimensional

 Over 600 dimensions in real world example

 Impossible to fully materialize
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Example 1: Confidence Interval

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old high-school students?

Return not only query result but also confidence interval
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Confidence Interval

 Confidence interval at    : 

 x is a sample of data set;     is the mean of sample

 tc is the critical t-value, calculated by a look-up

 is the estimated standard error of the mean

 Example: $50,000 ± $3,000 with 95% confidence

 Treat points in cube cell as samples

 Compute confidence interval as traditional sample set

 Return answer in the form of confidence interval

 Indicates quality of query answer

 User selects desired confidence interval
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Efficient Computing Confidence Interval Measures

 Efficient computation in all cells in data cube

 Both mean and confidence interval are algebraic

 Why confidence interval measure is algebraic?

is algebraic

where both s and l (count) are algebraic

 Thus one can calculate cells efficiently at more general 

cuboids without having to start at the base cuboid each 

time
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Example 2: Query Expansion

Age/Education High-school College Graduate

18

19

20

…

What is the average income of 19-year-old college students?



119119

Boosting Confidence by Query Expansion

 From the example: The queried cell “19-year-old 
college students” contains only 2 samples

 Confidence interval is large  (i.e., low confidence). 
why?

 Small sample size 
 High standard deviation with samples 

 Small sample sizes can occur at relatively low 
dimensional selections

 Collect more data?― expensive!
 Use data in other cells?  Maybe, but have to be careful
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Intra-Cuboid Expansion: Choice 
1

Age/Education High-school College Graduate

18

19

20

…

Expand query to include 18 and 20 year olds?
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Intra-Cuboid Expansion: Choice 
2

Age/Education High-school College Graduate

18

19

20

…

Expand query to include high-school and graduate students?
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Query Expansion
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Intra-Cuboid Expansion

 Combine other cells’ data into own to “boost” 
confidence

 If share semantic and cube similarity

 Use only if necessary

 Bigger sample size will decrease confidence interval

 Cell segment similarity

 Some dimensions are clear: Age

 Some are fuzzy: Occupation

 May need domain knowledge

 Cell value similarity

 How to determine if two cells’ samples come from 
the same population?

 Two-sample t-test (confidence-based)
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Inter-Cuboid Expansion

 If a query dimension is 

 Not correlated with cube value

 But is causing small sample size by drilling down too 

much

 Remove dimension (i.e., generalize to *) and move to a 

more general cuboid

 Can use two-sample t-test to determine similarity 

between two cells across cuboids

 Can also use a different method to be shown later
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Query Expansion Experiments

 Real world sample data: 600 dimensions and 
750,000 tuples

 0.05% to simulate “sample” (allows error checking)
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data Cube 

Technology

 Sampling Cube

 Ranking Cube

 Multidimensional Data Analysis in Cube Space

 Summary
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Ranking Cubes – Efficient 
Computation of Ranking queries

 Data cube helps not only OLAP but also ranked search

 (top-k) ranking query: only returns the best k results 

according to a user-specified preference, consisting of (1) 

a selection condition and (2) a ranking function

 Ex.: Search for apartments with expected price 1000 and 
expected square feet 800

 Select top 1 from Apartment
 where City = “LA” and Num_Bedroom = 2
 order by [price – 1000]^2 + [sq feet - 800]^2 asc

 Efficiency question: Can we only search what we need?
 Build a ranking cube on both selection dimensions and 

ranking dimensions
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Sliced Partition 

for city=“LA”

Sliced Partition 

for BR=2

Ranking Cube: Partition Data on Both 
Selection and Ranking Dimensions

One single data 

partition as the template

Slice the data partition 

by selection conditions

Partition for

all data
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Materialize Ranking-Cube

tid City BR Price Sq feet Block ID

t1 SEA 1 500 600 5

t2 CLE 2 700 800 5

t3 SEA 1 800 900 2

t4 CLE 3 1000 1000 6

t5 LA 1 1100 200 15

t6 LA 2 1200 500 11

t7 LA 2 1200 560 11

t8 CLE 3 1350 1120 4

Step 1: Partition Data on 

Ranking Dimensions

Step 2: Group data by

Selection Dimensions

City

BR

City & BR

3 421

CLE

LA

SEA

Step 3: Compute Measures for each group

For the cell (LA)

1            2             3        4

5            6             7        8

9            10        11        12

13         14              15   16

Block-level: {11, 15}

Data-level: {11: t6, t7; 15: t5}
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Search with Ranking-Cube: 
Simultaneously Push Selection and 

Ranking

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

Without ranking-cube: start 

search from here
With ranking-cube: 

start search from here

Measure for LA: 

{11, 15}

{11: t6,t7; 15:t5}

11

15

Given the bin boundaries, 

locate the block with top score

Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]
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Processing Ranking Query: Execution Trace

Select top 1 from Apartment

where city = “LA”

order by [price – 1000]^2 + [sq feet - 800]^2 asc

800

1000

With ranking-

cube: start search 

from here

Measure for LA: 

{11, 15}

{11: t6,t7; 15:t5}

11

15

f=[price-1000]^2 + [sq feet – 800]^2
Bin boundary for price [500, 600, 800, 1100,1350]

Bin boundary for sq feet [200, 400, 600, 800, 1120]

Execution Trace:

1. Retrieve High-level measure for LA {11, 15}

2. Estimate lower bound score for block 11, 15

f(block 11) = 40,000, f(block 15) = 160,000

3. Retrieve block 11

4. Retrieve low-level measure for block 11

5. f(t6) = 130,000, f(t7) = 97,600

Output t7, done!
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Ranking Cube: Methodology and Extension

 Ranking cube methodology

 Push selection and ranking simultaneously

 It works for many sophisticated ranking functions

 How to support high-dimensional data?

 Materialize only those atomic cuboids that contain 

single selection dimensions

 Uses the idea similar to high-dimensional OLAP

 Achieves low space overhead and high 

performance in answering ranking queries with a 

high number of selection dimensions
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data 

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Data Mining in Cube Space

 Data cube greatly increases the analysis bandwidth 
 Four ways to interact OLAP-styled analysis and data mining

 Using cube space to define data space for mining 
 Using OLAP queries to generate features and targets for 

mining, e.g., multi-feature cube
 Using data-mining models as building blocks in a multi-

step mining process, e.g., prediction cube
 Using data-cube computation techniques to speed up 

repeated model construction
 Cube-space data mining may require building a 

model for each candidate data space
 Sharing computation across model-construction for 

different candidates may lead to efficient mining
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Prediction Cubes

 Prediction cube: A cube structure that stores prediction 
models in multidimensional data space and supports 
prediction in OLAP manner

 Prediction models are used as building blocks to define 
the interestingness of subsets of data, i.e., to answer 
which subsets of data indicate better prediction
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How to Determine the Prediction Power 
of an Attribute?

 Ex. A customer table D:

 Two dimensions Z: Time (Month, Year ) and Location 
(State, Country)

 Two features X: Gender and Salary

 One class-label attribute Y: Valued Customer

 Q: “Are there times and locations in which the value of a 
customer depended greatly on the customers gender 
(i.e., Gender: predictiveness attribute V)?”

 Idea:

 Compute the difference between the model built on 
that using X to predict Y and that built on using X – V
to predict Y

 If the difference is large, V must play an important role 
at predicting Y
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Efficient Computation of Prediction Cubes

 Naïve method: Fully materialize the prediction 
cube, i.e., exhaustively build models and evaluate 
them for each cell and for each granularity

 Better approach: Explore score function 
decomposition that reduces prediction cube 
computation to data cube computation
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Complex Aggregation at Multiple 
Granularities: Multi-Feature Cubes

 Multi-feature cubes (Ross, et al. 1998): Compute complex queries 
involving multiple dependent aggregates at multiple granularities

 Ex. Grouping by all subsets of {item, region, month}, find the 
maximum price in 2010 for each group, and the total sales among 
all maximum price tuples

select item, region, month, max(price), sum(R.sales)

from purchases

where year = 2010

cube by item, region, month: R

such that R.price = max(price)

 Continuing the last example, among the max price tuples, find the  
min and max shelf live, and find the fraction of the total sales due 
to tuple that have min shelf life within the set of all max price 
tuples
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Multidimensional Data Analysis in 
Cube Space

 Prediction Cubes: Data Mining in Multi-

Dimensional Cube Space

 Multi-Feature Cubes: Complex Aggregation at 

Multiple Granularities

 Discovery-Driven Exploration of Data Cubes
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Discovery-Driven Exploration of Data Cubes

 Hypothesis-driven

 exploration by user, huge search space

 Discovery-driven (Sarawagi, et al.’98)

 Effective navigation of large OLAP data cubes

 pre-compute measures indicating exceptions, guide 

user in the data analysis, at all levels of aggregation

 Exception: significantly different from the value 

anticipated, based on a statistical model

 Visual cues such as background color are used to 

reflect the degree of exception of each cell



143143

Kinds of Exceptions and their Computation

 Parameters 

 SelfExp: surprise of cell relative to other cells at same 

level of aggregation

 InExp: surprise beneath the cell

 PathExp: surprise beneath cell for each drill-down 

path

 Computation of exception indicator (modeling fitting and 

computing SelfExp, InExp, and PathExp values) can be 

overlapped with cube construction

 Exception themselves can be stored, indexed and 

retrieved like precomputed aggregates
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Examples: Discovery-Driven Data Cubes
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Chapter 5: Data Cube Technology

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 Processing Advanced Queries by Exploring Data 

Cube Technology

 Multidimensional Data Analysis in Cube Space

 Summary
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Data Cube Technology: 
Summary

 Data Cube Computation: Preliminary Concepts 

 Data Cube Computation Methods

 MultiWay Array Aggregation

 BUC

 Star-Cubing

 High-Dimensional OLAP with Shell-Fragments

 Processing Advanced Queries by Exploring Data Cube Technology

 Sampling Cubes 

 Ranking Cubes 

 Multidimensional Data Analysis in Cube Space

 Discovery-Driven Exploration of Data Cubes 

 Multi-feature Cubes 

 Prediction Cubes
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H-Cubing: Using H-Tree 
Structure

 Bottom-up computation

 Exploring an H-tree 

structure

 If the current 

computation of an H-tree 

cannot pass min_sup, do 

not proceed further 

(pruning)

 No simultaneous 

aggregation

 all

 A  B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB
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H-tree: A Prefix Hyper-tree

Month City Cust_grp Prod Cost Price

Jan Tor Edu Printer 500 485

Jan Tor Hhd TV 800 1200

Jan Tor Edu Camera 1160 1280

Feb Mon Bus Laptop 1500 2500

Mar Van Edu HD 540 520

… … … … … …

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …

… …

Header

table
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root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mon.

Q.I.Q.I. Q.I.Quant-Info

Sum: 1765

Cnt: 2

bins

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Tor …
Van …
Mon …
… …

Attr. Val. Q.I. Side-link
Edu …
Hhd …
Bus …
… …

Jan …
Feb …
… …

Header
Table
HTor

From (*, *, Tor) to (*, Jan, Tor)

Computing Cells Involving “City”
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Computing Cells Involving Month But No City

root

Edu. Hhd. Bus.

Jan. Mar. Jan. Feb.

Tor. Van. Tor. Mont.

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link

Edu. Sum:2285 …

Hhd. …

Bus. …

… …

Jan. …

Feb. …

Mar. …

… …

Tor. …

Van. …

Mont. …

… …

1. Roll up quant-info
2. Compute cells involving 

month but no city

Q.I.

Top-k OK mark: if Q.I. in a child passes 
top-k avg threshold, so does its parents. 
No binning is needed!
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Computing Cells Involving Only Cust_grp

root

edu hhd bus

Jan Mar Jan Feb

Tor Van Tor Mon

Q.I.Q.I. Q.I.

Attr. Val. Quant-Info Side-link
Edu Sum:2285 …
Hhd …
Bus …
… …

Jan …
Feb …
Mar …
… …
Tor …
Van …
Mon …
… …

Check header table directly

Q.I.


