
Mobility Programming

DR. RAMEZ ALKHATIB

Lecture 3: Android Activities

The Activity Lifecycle

 Activities are managed by the Android

runtime

 Activities have a “lifecycle” consisting of

states

 From creation till death

 Standard (lifecycle) methods on the

activity are invoked at each state change

(can test by rotating device)

Activity States

 Created: Born to run

 Active: Working 9 to 5

 Paused: I’m about to break

 Resumed: Back to work

 Stopped: Obscured by clouds, vulnerable

Activity Transitions

 Created ⟹Active

Active ⟺Paused

Paused ⟹Stopped ⟹Active

Stopped ⟹Killed

Timing of Activity Lifecycle
Methods

 Most important component type

 Controls the application flow

 Initiates intents

 Delegates to other activities

onCreate()

Activity Lifecycle : OnCreate()

 Activity on the foreground of the screen

 First thing called

 Called when screen is rotated

Called when there is a language change

onStart()
 Called after
onCreate() and
when user
brings activity to
the foreground

When activity
is brought to the
foreground

Activity Lifecycle : OnStart()

onPause()

Activity Lifecycle : OnPause()

 Called when user
brings another
window up

 Application has
to be visible

 State might be
lost, if device low
in memory

onStop()

Activity Lifecycle : OnStop()

 Activity no longer
visible

 All state lost, must
be persisted
somewhere

onResume()

Activity Lifecycle : OnResume()

 The opposite of
onPause()

onRestart()

Activity Lifecycle : OnRestart()

 Calls onStart()

onDestroy()

Activity Lifecycle : onDestroy()

 Final exit

 Clean up happens
automatically

 But if you have spawned
any threads, you might have
to kill them

 Might not be called at all !

 Don’t save state here

Activity State Transitions and Methods

App components

Four different kinds of components

 Activities
 Single Screen

 Services
 Background process

 Broadcast receivers
 Route, present to status bar

 Content providers
 Databases

Intents

With the exception of content
providers, all components exchange
messages
 These messages are called intents

 Think of them as asynchronous method
calls

Manifest file

 AndroidManifest.xml

 All components have to be registered there

http://developer.android.com/guide/topics/manifest/manif
est-intro.html

 Android also picks up component information from here

 Other apps can make use of our components

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Starting a new activity

 Define a class that sub-classes Activity

 Add some GUI control to invoke it from the
parent activity

 Listen for the relevant event, then launch a
new Intent

 This will indirectly call the new Activity’s
method :
 onCreate(Bundle savedInstance)

 The new activity will start and enter then
Resumed state via the call graph shown
previously

Pretty pictures

 Looks like this

 Using messages

Intents
 “An intent is an abstract description of an operation to be
performed.” (developer.android.com)

 A bit like a method call

 Two flavours : explicit and implicit

 An explicit Intent specifies exactly which Activity should
be started

 An implicit Intent is more declarative : it explains what the
Activity should do

 The system will then search for Activities that match by
checking the Intent filters

 Example : opening a Web Page (more on this later)

Example

 The following example adds an Activity to provide
information about an App

 A menu item called “About” is added to the options menu

 We listen for onOptionItemSelected events within the
main activity

 Create an Intent, then call startActivity with the Intent as
an argument

 When the user has finished reading the HTML page, the
back button can be used to return to the main app

 This behavior is automatic use of the “back stack” ; no
need to program it

AboutActivity

 Simple example uses a hard-coded HTML file
name ; import statements are omitted

 Uses a WebView to display an HTML page
specified in loadUrl method)

Updating the AndroidManifest.xml

Explicit calling

Add the menu / launching Intent

Implicit intent ?

 Instead of specifying exactly which Activity class
should handle the intent, can instead specify an
action e.g. via a URL

Another example, google maps

 Instead of specifying exactly which Activity class
should handle the intent, can instead specify an
action e.g. via a URL

Intent filters

 Each activity can declare filters

 How can we call our activity implicitly ?

 Where should we add this filter in our case ?

Questions?

EXAMPLE

 An activity class loads all the UI component using
the XML file available in res/layout folder of the
project. Following statement loads UI components
from res/layout/activity_main.xml file:

setContentView(R.layout.activity_main);

EXAMPLE
 An application can have one or more activities without any restrictions.

 Every activity you define for your application must be declared in
your AndroidManifest.xml file

 the main activity for your app must be declared in the manifest with an
<intent-filter> that includes the MAIN action and LAUNCHER category
as follows:

