
Mobility Programming

DR. RAMEZ ALKHATIB

Lecture 2: Android Architecture

What is Android?

Android is a software stack for mobile
devices that includes an operating system,
middleware and key applications.

OHA (Open Handset Alliance)

A business alliance consisting of 47
companies to develop open standards for
mobile devices

Android
Android, Inc. founded in Palo Alto, California in October 2003

Google acquired Android Inc. in August 2005

Developed a mobile device platform powered by the Linux kernel

Google marketed the platform to handset makers and carriers on the
premise of providing a flexible, upgradable system

On November 2007, the Open Handset Alliance, a consortium of
several companies (e.g., Broadcom, Google, HTC, Intel, etc.
unveiled itself). The goal is to develop open standards for mobile
devices.

Open Handset Alliance unveiled their first product, Android, a
mobile device platform built on the Linux kernel version 2.6

Android OS (open source) released in October 2008

Why Android
 Simple and powerful SDK

 No licensing fees

 Excellent documentation, and a thriving
developer community

 From commercial perspective
 Requires no certification for becoming an Android

developer
 Provides the Android Market for distribution and

monetization of your application
 Has no approval process for application distribution
 Gives you total control over your brand and access to

the user’s home screen

Android Overview
 Open source OS and development platform
 In theory, you can change anything

 In practice....

 Hardware reference design

 Linux OS kernel

 Open-source libraries for app development
 E.g., SQLite, Webkit, OpenGL, media managerMobile

Application Design and D

 SDK and tools

 Preinstalled apps

 Wild west of app stores: the Market

Android Version

Features and Specifications

Platform is adaptable to larger, VGA, 2D graphics library, 3D
OpenGL graphics library

 Storage - SQLite, a lightweight relational database

 Connectivity - supports connectivity technologies including
GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi,
LTE, NFC and WiMAX.

Messaging – SMS, MMS, threaded text messaging, Push
Messaging service.

Multiple language support

Web browser - based on the open-source WebKit layout engine,
coupled with Chrome's V8 JavaScript engine.

 Java support – no Java Virtual Machine, Dalvik executables and
run on Dalvik

Features and Specifications
Media support - audio/video/still media formats: WebM,
H.263, H.264, MPEG-4 SP, WAV, JPEG, PNG, GIF, BMP, etc.

 Streaming media support - RTP/RTSP streaming (3GPP PSS,
ISMA), HTML5 <video> tag, Adobe Flash Streaming (RTMP),
HTTP Dynamic Streaming, Apple HTTP Live Streaming

 Additional hardware support - video/still cameras,
touchscreens, GPS, accelerometers, gyroscopes, magnetometers,
dedicated gaming controls, proximity and pressure sensors,
thermometers, accelerated 2D bit blits and accelerated 3D
graphics

Multi-touch

 Bluetooth - supports A2DP, AVRCP, sending files (OPP),
accessing the phone book (PBAP), voice dialing and sending
contacts between phones. Keyboard, mouse and joystick (HID)

Features and Specifications

 Video calling – no native video calling, but some handsets have

a customized version of the operating system that supports it.

Video calling through Google Talk is available in Android 2.3.4

and later. Skype 2.1 offers video calling in Android 2.3, including

front camera support.

Multitasking

 Voice based features - Google search through voice and voice

actions for calling, texting, navigation, etc.

 Tethering

Architecture

Android S/W Stack - Application

Android provides a set of core applications:
 mail Client
 SMS Program
 Calendar
 Maps
 Browser
 Contacts
 Etc

 All applications are written using the Java language.

Android S/W Stack – App Framework

Enabling and simplifying the reuse of
components
Developers have full access to the same

framework APIs used by the core applications.

Users are allowed to replace components.

Android S/W Stack –App Framework (Cont)

 Features

Feature Role

View
System

Used to build an application, including lists, grids, text
boxes, buttons, and embedded web browser

Content
Provider

Enabling applications to access data from other
applications or to share their own data

Resource
Manager

Providing access to non-code resources (localized strings,
graphics, and layout files)

Notification
Manager

Enabling all applications to display customer alerts in the
status bar

Activity
Manager

Managing the lifecycle of applications and providing
a common navigation backstack

Android S/W Stack - Libraries

Including a set of C/C++ libraries used by
components of the Android system

Exposed to developers through the Android
application framework

Android S/W Stack - Runtime

 Core Libraries
Providing most of the functionality available in the

core libraries of the Java language
APIs
Data Structures

Utilities

File Access

Network Access

Graphics

Etc

Android S/W Stack – Runtime (Cont)

 Dalvik Virtual Machine
 Providing environment on which every Android

application runs
 Each Android application runs in its own process, with its own

instance of the Dalvik VM.

 Dalvik has been written such that a device can run multiple VMs
efficiently.

Register-based virtual machine

Android S/W Stack – Runtime (Cont)

Dalvik Virtual Machine (Cont)
Executing the Dalvik Executable (.dex) format
.dex format is optimized for minimal memory footprint.

Compilation

Relying on the Linux Kernel for:
Threading

Low-level memory management

Android S/W Stack – Linux Kernel

Relying on Linux Kernel 2.6 for core system
services
Memory and Process Management
Network Stack
Driver Model
Security

Providing an abstraction layer between the
H/W and the rest of the S/W stack

Android Component Model
 Packaging: APK File (Android Package)
 Collection of components
 Components share a set of resources

 Preferences, Database, File space

 Components share a Linux process
 By default, one process per APK

 APKs are isolated
 Communication via Intents or AIDL

 Every component has a managed lifecycle

Task (what users know as
applications)
 Collection of related activities
 Capable of spanning multiple processes
 Associated with its own UI history stack
 Processes are started & stopped as

needed
 Processes may be killed to reclaim

resources

Android Application Components

● Activities – represent a single screen with a UI
● Services – represents a process running in the

background
● Content Provider – a link back to the data
● Broadcast Receiver – listens for system-wide

messages to respond to
● Application – a set of Activities that make up a

cohesive unit
● Intent – a message to be passed

Activity

● Conceptually, an Activity is a single screen
of your application

● In other words, an App really is a
collection of related Activities

● Consider each Activity both a screen and a
feature

● Apps can activate Activities in other Apps

Service

● A Service is a component that runs in the
background to perform long-running
operations

● A Service has no UI
● Examples of Services:

○ Playing music in background
○ Gathering GPS data
○ Downloading a data set from the server

Content Provider

● A Content Provider manages a shared set
of app data

● This shared set of data could be a file, an
SQLite DB, a remote link to a web service,
etc.

● Apps can query a Content Provider for data
if they have permission

● For example, your App could query the
Contacts DB for a set of email addresses

● Content Providers can also be private

Broadcast Receiver

● A Broadcast Receiver responds to system-
wide announcements (which are
manifested as Intents)

● System status information is delivered this
way (i.e. device turned on side, screen off,
low battery, phone call incoming, etc.)

● Broadcast Receivers typically don’t have a
UI, but could have a status bar icon

Intent

● An Intent is a message that requests an
action from another component of the
system

● This includes the “please start up your
App” Intent that the system sends when a
user clicks on your App icon

Connected Apps

● Due to the component nature of Apps
(made up of Activities, Services, etc.), it is
easy to build features of your App using
existing system components

● For example, if your App needs to take a
picture, you can query the Camera Activity
to handle that request and return the
resulting image

● This is handled through Intents

Tying it all Together

● If an App is made up of all these disparate
parts, what holds them all together?

● The AndroidManifest.xml file!
○ Sets up all permissions the user has to agree to

(i.e. Internet, GPS, contacts, etc.)
○ Declares the API level of the App
○ Requests hardware features needed
○ Needed libraries
○ Which Activities are part of this App

What about the other stuff?

● Typically referred to as “assets,” anything
that isn’t code is placed in the res/ folder

● Music
● Images
● Some static data files

Where’s the UI?

● The User Interface for an Android App is
defined in the layout xml files

● Each layout xml file should correspond to
an Activity

The App Lifecycle

Developing for Android

 Eclipse (NDA (Native Development Kit))
 JDK (Java Development Kit) +JRE (Java Runtime Environment)

 Android SDK (Software Development Kit)

 Android Development Tools (ADT)

 Android Virtual Devices (AVD) & SDK Manager

 The Android Emulator

 Dalvik Debug Monitor Services (DDMS)

 The Android Debug Bridge (ADB)

Questions?

