
24/06/1439

1

Mobility Programming

DR. RAMEZ ALKHATIB

Lecture 1: Java Review

Java

Java is an object-oriented language, with a
syntax similar to C
Structured around objects and methods
A method is an action or something you do with

the object

Avoid those overly complicated features of
C++:
Operator overloading, pointer, templates, friend

class, etc.

24/06/1439

2

Run-time

Java
Interpreter

Just in
Time

Compiler

Runtime System

Class
Loader

Java
Class

Libraries

Operating System

Hardware

Java
Virtual
machine

How it works…!
Compile-time

Java
Bytecodes

move locally
or through

network

Java
Source
(.java)

Java
Compiler

Java
Bytecode
(.class)

Getting and using java
JDK freely download from http://www.oracle.com

All text editors support java
Vi/vim, emacs, notepad, wordpad

Just save to .java file

Eclipse IDE
Eclipse

http://www.eclipse.org

Android Development Tools (ADT) is a plugin for Eclipse

24/06/1439

3

Compile and run an application

Write java class HolaWorld containing a main()

method and save in file ”HolaWorld.java”

The file name MUST be the same as class name

Compile with: javac HolaWorld.java

Creates compiled .class file: HolaWorld.class

Run the program: java HolaWorld
Notice: use the class name directly, no .class!

Hola World!

/* Our first Java program – HolaWorld.java */

public class HolaWorld {
//main()
public static void main (String[] args)

{
System.out.println(”Hola world!");

}
}

File name: HolaWorld.java

Command line
arguments

Standard output, print with new line

24/06/1439

4

HolaWorld in Eclipse - create a new project

 File > New > Java Project

 Project Name : HolaWorld

HolaWorld in Eclipse – add a new class

 File > New > Class

 source folder :
HolaWorld/src

 Package : ucab.test

 Name : HolaWorld

 check "public static void
main (String[] args)

24/06/1439

5

HolaWorld in Eclipse – write your code

 Add your code

System.out.println(“Hola world!”);

HolaWorld in Eclipse – run your program

 Run > Run As > Java Application

24/06/1439

6

Object-Oriented

Java supports OOP
Polymorphism

Inheritance

Encapsulation

Java programs contain nothing but
definitions and instantiations of classes
Everything is encapsulated in a class!

The three principles of OOP

Encapsulation
Objects hide their functions (methods)

and data (instance variables)

Inheritance
Each subclass inherits all variables of its

superclass

Polymorphism
Interface same despite different data

types

car

auto-
matic

manual

Super class

Subclasses

draw() draw()

24/06/1439

7

About class

Fundamental unit of Java program

All java programs are classes

A class is a template or blueprint for objects

A class describes a set of objects that have identical characteristics
(data elements) and behaviors (methods).
Existing classes provided by JRE

User defined classes

Each class defines a set of fields (variables), methods or other
classes

What is an object?

An object is an instance of a class

An object has state, behavior and identity
Internal variable: store state

Method: produce behavior

Unique address in memory: identity

24/06/1439

8

An object is a chunk of memory:
holds field values

holds an associated object type

All objects of the same type share code
they all have same object type, but can have

different field values.

What does it mean to create an object?

Class Person: definition

class Person {

String name;

int height; //in inches

int weight; //in pounds

public void printInfo(){

System.out.println(name+" with height="+height+",
weight="+weight);

}

}

class ClassName{

/* class body goes here */

}

class: keyword

Variables

Method

24/06/1439

9

Person john; //declaration

john = new Person();//create an object of Person

john.name= “John Kim”;//access its field

Person sam = new Person();

sam.name=“Sam George”;

john.printInfo(); // call method

sam.printInfo();

Class Person: usage

Name: John Kim

height: 0

weight: 0

Name: Sam George

height: 0

weight: 0

john

sam

References Objects allocated in memory

Class Person: reference

24/06/1439

10

Reference

Person john; //only created the reference, not an
object. It points to nothing now (null).

john = new Person(); //create the object (allocate
storage in memory), and john is
initialized.

john.name=“John”; //access the object
through the reference

Primitive type Size Minimum Maximum Wrapper type

boolean 1-bit — — Boolean

char 16-bit Unicode 0 Unicode 216- 1 Character

byte 8-bit -128 +127 Byte

short 16-bit -215 +215-1 Short

int 32-bit -231 +231-1 Integer

long 64-bit -263 +263-1 Long

float 32-bit IEEE754 IEEE754 Float

double 64-bit IEEE754 IEEE754 Double

Primitive types

24/06/1439

11

Reference vs. primitive
Java handle objects and arrays always by reference.
◦ classes and arrays are known as reference types.
◦ Class and array are composite type, don’t have standard size

Java always handle values of the primitive types directly
◦ Primitive types have standard size, can be stored in a fixed amount of

memory

Because of how the primitive types and objects are handles,
they behave different in two areas: copy value and compare
for equality

Copy

Primitive types get copied directly by =
 int x= 10; int y=x;

Objects and arrays just copy the reference, still
only one copy of the object existing.

Name: John

height: 0

weight: 0

john

x

Person john = new Person();
john.name=”John";
Person x=john;
x.name="Sam";
System.out.println(john.name); // print Sam!

24/06/1439

12

Scoping: in a class

public class VisibilityDemo {

private int classVar1;

private int classVar2;

public int method1(int x) {

int local = 0;

for (int i = 0; i < x; i++){

local += i;

}

return local;

}

public void method2 (int x) {

classVar1 = x + 10;

classVar2 = method1(classVar2);
}

}

The red identifiers denote class varialbes
and methods. They have visibility
anywhere inside the outermost pair of
red curly brackets

The blue identifiers are local to a single
block (identified by blue brackets). They
are not visible to anything outside of their
block, but are visible inside blocks nested
inside of the blue bracketed block.

The gray identifiers are found inside the for-
loop. The gray variable i is visible only
inside the loop.

Parameters are denoted by green. They are
visible everywhere inside the method in
which they appear, but only in that method

Access to packages
◦ Java offers no control mechanisms for packages.

◦ If you can find and read the package you can access it

Access to classes
◦ All top level classes in package P are accessible anywhere in P

◦ All public top-level classes in P are accessible anywhere

Access to class members (in class C in package P)
◦ Public: accessible anywhere C is accessible

◦ Protected: accessible in P and to any of C’s subclasses

◦ Private: only accessible within class C

◦ Package: only accessible in P (the default)

Access control

24/06/1439

13

Scoping: visibility between classes

The static keyword

Java methods and variables can be declared static

These exist independent of any object

This means that a Class’s
◦ static methods can be called even if no objects of that class have been

created and

◦ static data is “shared” by all instances (i.e., one rvalue per class instead of
one per instance

class StaticTest {static int i = 47;}

StaticTest st1 = new StaticTest();

StaticTest st2 = new StaticTest();

// st1.i == st2.I == 47

StaticTest.i++; // or st1.I++ or st2.I++

// st1.i == st2.I == 48

24/06/1439

14

XML Review

XML

eXtensible Markup Language

Simple text (Unicode) underneath

Tags (like in HTML) are used to provide
information about the data

Similar to HTML, but:
HTML is used to describe how to display the

data
XML is used to describe what is the data

Often used to store and transfer data

24/06/1439

15

HTML Example

<html>

<head><title>Here goes the
title</title></head.

<body>

<h1>This is a header</h1>

Here goes the text of the page

</body>

</html>

• Tags mean
something specific
to the browser

• They are used for
display

XML Example

<?xml version=“1.0”/>

<person>

<name>

<first>Jose</first>

<last>Barrios</last>

</name>

<email>jb@ucab.edu</email>

<phone 555-456-1234 />

</person>

• Tags mean
whatever the user
wants them to
mean

• They are used to
describe the data

24/06/1439

16

XML Rules

Tags are enclosed in angle brackets.

Tags come in pairs with start-tags and end-
tags.

Tags must be properly nested.
◦ <name><email>…</name></email> is not allowed.

◦ <name><email>…</email><name> is.

Tags that do not have end-tags must be
terminated by a ‘/’.

Document has a single root element

XML Documents are Trees

Person

Name

First Last

Email Phone

24/06/1439

17

Android Manifest
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.helloandroid"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
android:label="@string/app_name">
 <activity android:name=".HelloAndroid"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Attributes

Questions?

