جامعة حماة الكلية التطبيقية قسم تقنيات حاسوب السنة الرابعة إدارة شبكات /٢/

م. إناس عدي المحاضرة السادسة



All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- Motivation: local network uses just one IP address as far as outside world is concerned:
  - range of addresses not needed from ISP: just one IP address for all devices
  - can change addresses of devices in local network without notifying outside world
  - can change ISP without changing addresses of devices in local network
  - devices inside local net not explicitly addressable, visible by outside world (a security plus).

#### Implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
  - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table



- □ 16-bit port-number field:
  - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
  - o routers should only process up to layer 3
  - violates end-to-end argument
    - NAT possibility must be taken into account by app designers, eg, P2P applications
  - address shortage should instead be solved by IPv6

# NAT traversal problem

- client wants to connect to server with address 10.0.0.1
  - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
  - only one externally visible NATted address: 138.76.29.7
- solution 1: statically configure NAT to forward incoming connection requests at given port to server
  - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000



# NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATted host to:
  - learn public IP address (138.76.29.7)
  - add/remove port mappings (with lease times)





# NAT traversal problem

- solution 3: relaying (used in Skype)
  - NATed client establishes connection to relay
  - External client connects to relay
  - o relay bridges packets between to connections



#### ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
  - error reporting: unreachable host, network, port, protocol
  - echo request/reply (used by ping)
- □ network-layer "above" IP:
  - ICMP msgs carried in IP datagrams
- □ ICMP message: type, code plus first 8 bytes of IP datagram causing error

| Туре | Code | description               |
|------|------|---------------------------|
| 0    | 0    | echo reply (ping)         |
| 3    | 0    | dest. network unreachable |
| 3    | 1    | dest host unreachable     |
| 3    | 2    | dest protocol unreachable |
| 3    | 3    | dest port unreachable     |
| 3    | 6    | dest network unknown      |
| 3    | 7    | dest host unknown         |
| 4    | 0    | source quench (congestion |
|      |      | control - not used)       |
| 8    | 0    | echo request (ping)       |
| 9    | 0    | route advertisement       |
| 10   | 0    | router discovery          |
| 11   | 0    | TTL expired               |
| 12   | 0    | bad IP header             |

### Traceroute and ICMP

- Source sends series of UDP segments to dest
  - First has TTL =1
  - Second has TTL=2, etc.
  - Unlikely port number
- When nth datagram arrives to nth router:
  - Router discards datagram
  - And sends to source an ICMP message (type 11, code 0)
  - Message includes name of router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

#### Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP "host unreachable" packet (type 3, code 3)
- When source gets this ICMP, stops.

# <u>IPv6</u>

- □ Initial motivation: 32-bit address space soon to be completely allocated.
- Additional motivation:
  - header format helps speed processing/forwarding
  - header changes to facilitate QoS

#### IPv6 datagram format:

- o fixed-length 40 byte header
- no fragmentation allowed

## IPv6 Header (Cont)

Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow."

(concept of "flow" not well defined).

Next header: identify upper layer protocol for data

| ver pri                      | flow label |          |           |  |  |  |  |
|------------------------------|------------|----------|-----------|--|--|--|--|
| payload                      | l len      | next hdr | hop limit |  |  |  |  |
| source address<br>(128 bits) |            |          |           |  |  |  |  |
| destination address          |            |          |           |  |  |  |  |
| (128 bits)                   |            |          |           |  |  |  |  |
| data                         |            |          |           |  |  |  |  |
| 22 bits                      |            |          |           |  |  |  |  |

จะ มหร

# Other Changes from IPv4

- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
  - o additional message types, e.g. "Packet Too Big"
  - multicast group management functions

### Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
  - ono "flag days"
  - O How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

# Other Changes from IPv4

- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
  - o additional message types, e.g. "Packet Too Big"
  - multicast group management functions

# Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
  - ono "flag days"
  - O How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

# Tunneling



# **Tunneling**



# The End