الوسائط المتعددة و برمجتها

السنة الثالثة

قسم تقنيات الحاسوب

المحاضرة الرابعة

إعداد م يوسف دعبول

Chapter 2 Digital Image Fundamentals Digital Jugge Fundamentals

Image Operations on a Pixel Basis

Numerous references are made to operations between images, such as dividing one image by another.

In some discussions, it is advantageous to use a more traditional matrix notation to denote a digital image and its elements:

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}.$$
(2.4-2)

In Eq. (2.4-2), images were represented in the form of matrices

when we refer to an operation like "dividing one image by another," we mean specifically that the division is carried out between *corresponding* pixels in the two images.

Image Operations on a Pixel Basis

Thus, for example, if f and g are images, the first element of the image formed by "dividing" f by g is simply the first pixel in f divided by the first pixel in g; of course, the assumption is that none of the pixels in g have value 0.

Other arithmetic and logic operations are similarly defined between corresponding pixels in the images involved.

Image Combination

Arithmetic combination is applied on a pixel-by-pixel basis.

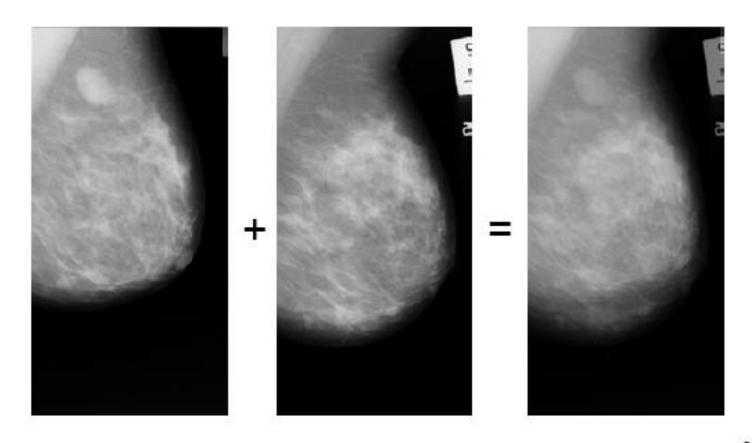
- The two images must have comparable dimensions.
- If not then image 1 ($w1 \times w2$), image 2 ($h1 \times h2$)
- − The new image will have dimensions w × h

```
\mathbf{w} = \min (w_1, w_2)\mathbf{h} = \min (h_1, h_2)
```

•Two types of image combination:

•arithmetic (image math)

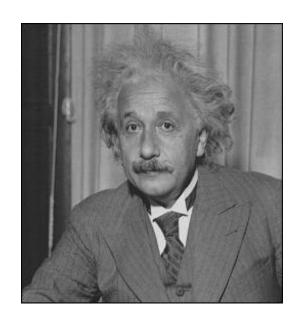
grayscale images


•Logical (Boolean)

binary images


Image Addition

- Image addition superimposes information:
 - •Pixels in the resulting image have values in the range 0-510.
 - •Normalize the resulting image.divided by two (image averaging or converted to 16-bit.)
 - •Primarily used for noise removal "Alpha blending".
 - •Give more emphasis to one image than the other $g(x,y) = \alpha f_1(x,y) + (1-\alpha)f_2(x,y)$
 - When $\alpha = 0.5$, g(x,y) becomes a simple, even-weighted average.
 - •Every pixel can have its own α stored in a separate α -channel.


Image Addition

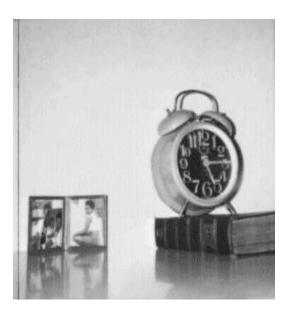
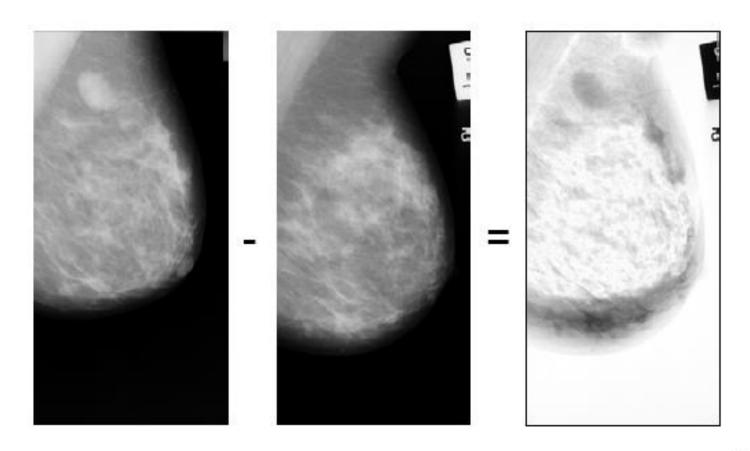


Image Subtraction

- Image subtraction calculates the differences between images
 - Used primarily for change detection
- Pixels in the resulting image have values in the range –255 to +255


$$g(x,y) = |f_1(x,y) - f_2(x,y)|$$

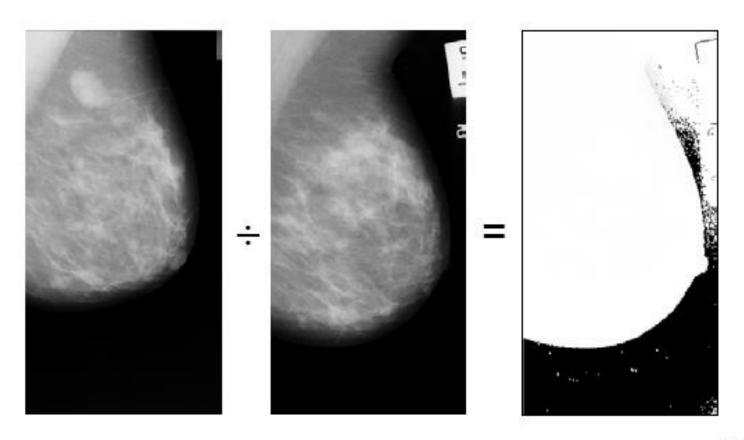
- Changes will be indicated by pixels in the difference image which have non-zero values.
 - The difference image will contain only features that change

Image Subtraction

- Sensor noise, slight intensity changes, and various other factors result in small differences which are of no significance.
- It is usual to apply a threshold to the difference image.
- Object motion can be measures through subtraction
 - e.g. track the motion of cells in response to chemical cues.

Image Subtraction

Image Division


- Image division is used for removing backgrounds when linear detectors or cameras are used.
 - For meaningful results use floating-point arithmetic
 - Produces a ratio image in which the pixels should be rescaled and rounded > normalise

$$g(x,y) = f_1(x,y)/f_2(x,y)$$

 Pixels of 0 intensity are removed from f₂, adding a constant of unity to produce

$$f_2 \equiv f_2 + C$$
, $C = 1$

Image Division

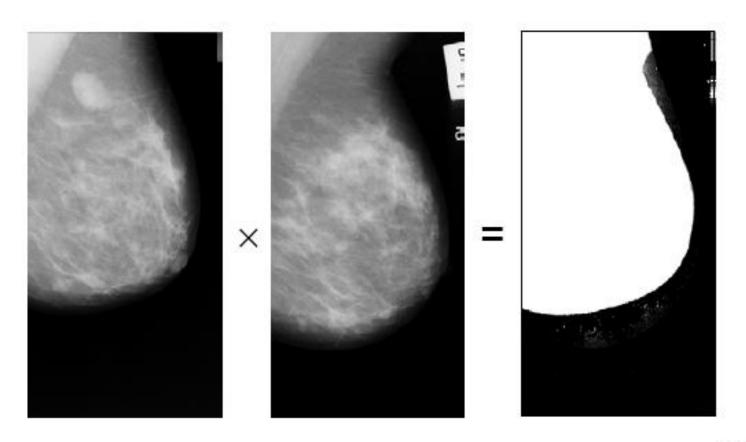

Image Multiplication

 Image multiplication is used for superimposing information

$$g(x,y) = f_1(x,y) \times f_2(x,y)$$

- Results in an extreme range of values: 0→255 becomes 0→65,000
- Loss of precision in rescaling
- e.g. Combine edge and direction information from Sobel edge detection
- e.g. Add fluorescence or other emission images to a reflection or transmission image

Image Multiplication

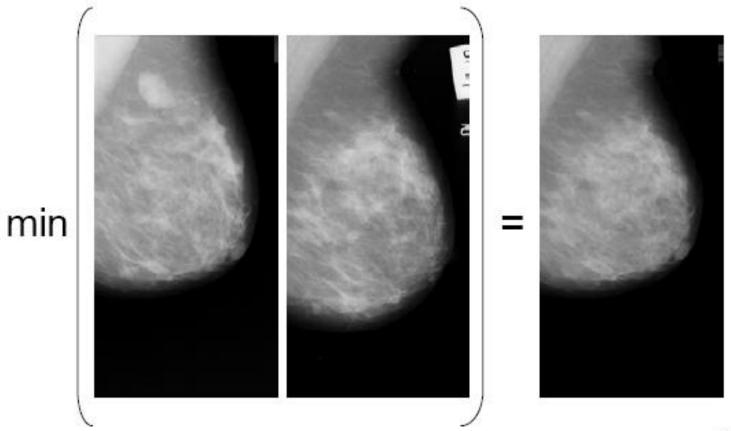
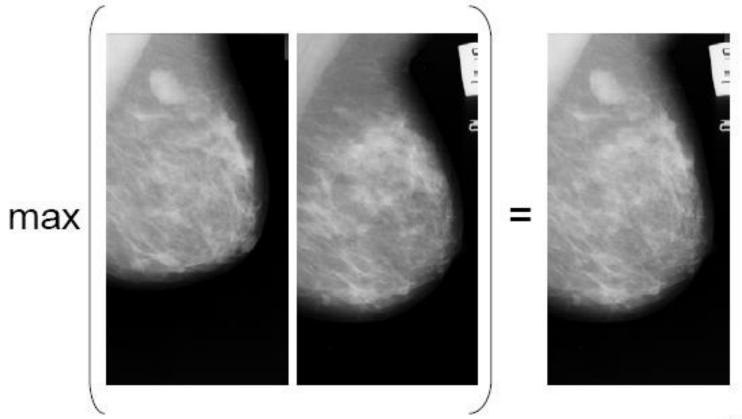
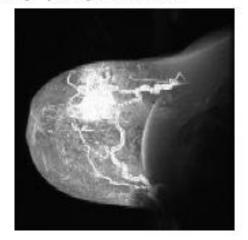

Image Minimum & Maximum

 Image combination using min (or max) involves retaining the darker (or lighter) intensity values at each location


$$g(x,y) = \min(f_1(x,y), f_2(x,y))$$

e.g. To build up a confocal scanning light microscope (CSLM) image with greater depth of field

Image Minimum


Image Maximum

Additional Effects

- Combining n images
 - Shifting each image slightly before performing combination, produces a perspective view of the surface.
 - Use the max function to combine images
 - · e.g. maximum intensity projections

Logical Combination

Logical or boolean combinations are usually applied to binary images

$$g(x,y) = f_1(x,y) \odot f_2(x,y)$$

- Operations
 - AND, OR, XOR, NOT

AND

- The pixel at location (x,y) is 1 if it is 1 in both images f₁(x,y) and f₂(x,y).
 - All pixels common to both images

$$g(x,y) = (f_1 AND f_2) = 1$$

if $f_1(x,y) = f_2(x,y) = 1$

OR

 The pixel at location (x,y) is 1 if it is 1 in either of the images f₁(x,y) or f₂(x,y).

$$g(x,y) = (f_1 \text{ OR } f_2) = 1$$

if $f_1(x,y) = 1 \text{ OR } f_2(x,y) = 1$

XOR

- Exclusive-OR
- The pixel at location (x,y) is 1 if it is 1 in either of the images f₁(x,y) or f₂(x,y), but not if it is 1 in both.

$$g(x,y) = (f_1 \text{ XOR } f_2) = 1$$

if $f_1(x,y) = 1 \text{ AND } f_2(x,y) = 0$,
or $f_1(x,y) = 0 \text{ AND } f_2(x,y) = 1$