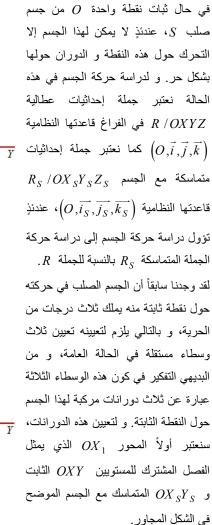
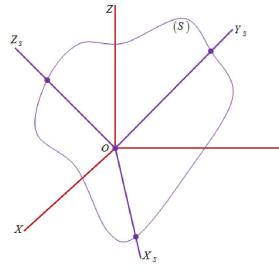
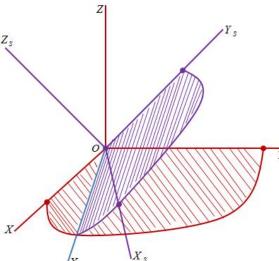
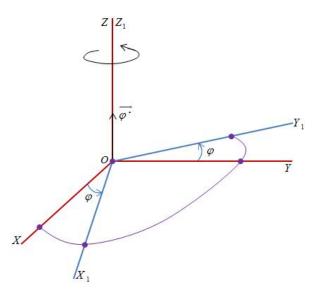
حركة جسم صلب حول نقطة ثابتة









يتضح هنا أن متجه الدوران في هذه الحالة هو المتجه

$$\overrightarrow{\omega_1} = \overrightarrow{\varphi} \cdot = \varphi \cdot \overrightarrow{k} = \varphi \cdot \overrightarrow{k_1}$$

 OZ_S على المحور محول المحور OX_1 بزاوية θ حتى ينطبق المحور OX_1 على المحور على الشكل التالي الذي هو المحور OZ_2 الجديد، لنحصل على الجملة الجديدة OZ_2 OZ_2 الموضحة في الشكل التالي



للانتقال من وضعية الجملة الثابتة R إلى وضعية الجملة المتماسكة R_S سنقوم بالدورانات الثلاث التالية

1. الدوران الأول للجملة الثابتة R حول المحور OZ بزاوية ϕ حتى ينطبق المحور OX على المحور OX_1 الموضحة في الشكل التالي لنحصل على الجملة الجديدة OX_1 الموضحة في الشكل التالي

 $\begin{bmatrix} x \ \vec{i} + y \ \vec{j} + z \ \vec{k} \end{bmatrix}$ $\overrightarrow{OM} = \begin{cases} x \ \overrightarrow{i_1} + y \ \overrightarrow{j_1} + z \ \overrightarrow{k_1} \\ x \ \overrightarrow{i_2} + y \ \overrightarrow{j_2} + z \ \overrightarrow{k_2} \end{cases}$

 $|x| \overrightarrow{i_S} + y \overrightarrow{j_S} + z \overrightarrow{k_S}$

ا. مصفوفة الترنح أو الاستباق: نسمي المصفوفة A_{ω} التي تحقق العلاقة

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = A_{\varphi} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

مصفوفة الترنح أو الاستباق و التي تمثل مصفوفة الانتقال من الجملة R إلى الجملة R_1 . و لإيجاد هذه المصفوفة نلاحظ أن

$$x_{1} = \overrightarrow{OM} \cdot \overrightarrow{i_{1}} = \left(x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}\right) \cdot \overrightarrow{i_{1}} = x \ \overrightarrow{i} \cdot \overrightarrow{i_{1}} + y \ \overrightarrow{j} \cdot \overrightarrow{i_{1}} + z \ \overrightarrow{k} \cdot \overrightarrow{i_{1}}$$

$$= x \ Cos\left(\widehat{i}, \widehat{i_{1}}\right) + y \ Cos\left(\widehat{j}, \widehat{i_{1}}\right) + z \ Cos\left(\widehat{k}, \widehat{i_{1}}\right)$$

$$= x \ Cos\left(\varphi\right) + y \ Cos\left(\frac{\pi}{2} - \varphi\right) + z \ Cos\left(\frac{\pi}{2}\right) = x \ Cos\left(\varphi\right) + y \ Sin\left(\varphi\right)$$

$$y_{1} = \overrightarrow{OM} \cdot \overrightarrow{j_{1}} = \left(x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}\right) \cdot \overrightarrow{j_{1}} = x \ \overrightarrow{i} \cdot \overrightarrow{j_{1}} + y \ \overrightarrow{j} \cdot \overrightarrow{j_{1}} + z \ \overrightarrow{k} \cdot \overrightarrow{j_{1}}$$

$$= x \ Cos\left(\widehat{i}, \widehat{j_{1}}\right) + y \ Cos\left(\widehat{j}, \widehat{j_{1}}\right) + z \ Cos\left(\widehat{k}, \widehat{j_{1}}\right)$$

$$= x \ Cos\left(\frac{\pi}{2} + \varphi\right) + y \ Cos\left(\varphi\right) + z \ Cos\left(\frac{\pi}{2}\right) = -x \ Sin\left(\varphi\right) + y \ Cos\left(\varphi\right)$$

$$z_{1} = \overrightarrow{OM} \cdot \overrightarrow{k_{1}} = \left(x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}\right) \cdot \overrightarrow{k_{1}} = x \ \overrightarrow{i} \cdot \overrightarrow{k_{1}} + y \ \overrightarrow{j} \cdot \overrightarrow{k_{1}} + z \ \overrightarrow{k} \cdot \overrightarrow{k_{1}}$$

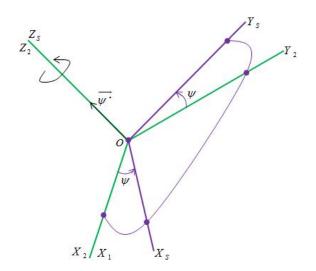
$$= x \ Cos\left(\widehat{i}, \widehat{k_{1}}\right) + y \ Cos\left(\widehat{j}, \widehat{k_{1}}\right) + z \ Cos\left(\widehat{k}, \widehat{k_{1}}\right)$$

$$= x \ Cos\left(\frac{\pi}{2}\right) + y \ Cos\left(\frac{\pi}{2}\right) + z \ Cos\left(0\right) = z$$

من الواضح أن متجه الدوران في هذه الحالة هو المتجه

$$\overrightarrow{\omega_2} = \overrightarrow{\theta} \cdot = \theta \cdot \overrightarrow{i_1} = \theta \cdot \overrightarrow{i_2}$$

محور الثالث هو للجملة R_2 حول المحور OZ_2 الذي هو المحور OZ_S بزاوية ψ حتى ينطبق المحور " الذي هو المحور OX_S على المحور OX_S على المحور OX_S التنطبق محاور OX_S الجملة الأخيرة الناتجة على محاور الجملة المتماسكة R_{S} ، كما هو موضح في الشكل التالي



يتضح لنا أن متجه الدوران في هذه الحالة هو المتجه

$$\overrightarrow{\omega_3} = \overrightarrow{\psi} \cdot = \psi \cdot \overrightarrow{k_S} = \psi \cdot \overrightarrow{k_2}$$

نتيجة: بتركيب الدور انات الثلاثة السابقة معاً يمكننا دائماً تعيين الجسم من خلال تعيين الجملة R_{S} المتماسكة مع هذا الجسم. أي أن حركة أي جسم صلب حول نقطة منه هي تركيب لثلاث دورانات معاً تتعين من خلال زاوية الرنح أو الاستباق arphi و زاوية التأرجح heta و زاوية الدوران الذاتي ψ التي تسمى زوايا أولر نسبة إلى العالم الذي قام بتعريف هذه الدور انات.

مصفوفات الانتقال بين الجمل الاحداثية:

لتكن M نقطة ما من الفراغ، و لنفرض مركبات متجه الموضع لهذه النقطة يعطى في الجمل الاحداثية R و R_1 و $R_{\rm S}$ و الشكل التالي $R_{\rm S}$

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} Cos(\varphi) & Sin(\varphi) & 0 \\ -Sin(\varphi) & Cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

و تكون مصفوفة الترنح أو الاستباق بالشكل

$$A_{\varphi} = \begin{pmatrix} Cos\left(\varphi\right) & Sin\left(\varphi\right) & 0\\ -Sin\left(\varphi\right) & Cos\left(\varphi\right) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

ملحظة: يمكن بسهولة ملاحظة أن مصفوفة الترنح أو الاستباق A_{φ} هي مصفوفة عامودية، أي أن $A_{\varphi}^{-1}=A_{\varphi}^{T}$. و بالتالي نستنتج أن

$$A_{\varphi}^{T} \cdot \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} = A_{\varphi}^{-1} \cdot \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} = A_{\varphi}^{-1} \cdot \begin{bmatrix} A_{\varphi} \cdot \begin{pmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A_{\varphi}^{-1} \cdot A_{\varphi} \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = I \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

أى أن مصفوفة الترنح أو الاستباق تحقق العلاقتين التاليتين

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = A_{\varphi} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} , \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A_{\varphi}^T \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

مصفوفة التأرجح: نسمي المصفوفة A_{α} التى تحقق العلاقة الم

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = A_{\theta} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

مصفوفة التأرجح و التي تمثل مصفوفة الانتقال من الجملة R_1 إلى الجملة R_2 . و بنفس الأسلوب السابق يمكن بسهولة استنتاج أن هذه المصفوفة تعطى بالشكل

$$A_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos(\theta) & Sin(\theta) \\ 0 & -Sin(\theta) & Cos(\theta) \end{pmatrix}$$

 $\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = A_{\theta} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} , \quad \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = A_{\theta}^T \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$

 A_{m} مصفوفة الدوران الذاتي: نسمى المصفوفة A_{m} التي تحقق العلاقة

$$\begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix} = A_{\psi} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$

مصفوفة الدوران الذاتي و التي تمثل مصفوفة الانتقال من الجملة R_2 إلى الجملة R_S . و بنفس الأسلوب المتبع سابقاً يمكن بسهولة استنتاج أن هذه المصفوفة تعطى بالشكل

$$A_{\psi} = \begin{pmatrix} Cos(\psi) & Sin(\psi) & 0 \\ -Sin(\psi) & Cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

وأن هذه المصفوفة تحقق العلاقتين التاليتين

$$\begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix} = A_{\psi} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} , \quad \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = A_{\psi}^T \cdot \begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix}$$

ملحظة: باستخدام المصفوفات الثلاث السابقة يمكن بسهولة الانتقال بين أي جملتين احداثيتين من الجمل السابقة.

متجه دوران جسم حول نقطة منه:

لقد وجدنا أن حركة الجسم حول نقطة منه هي تركيب لثلاث دورانات آنية، و بالتالي يمكن أن نضع متجه الدوران الأنى الكلي لهذا الجسم في كل لحظة بالشكل

$$\overrightarrow{\omega} = \overrightarrow{\omega_1} + \overrightarrow{\omega_2} + \overrightarrow{\omega_3} = \varphi \cdot \overrightarrow{k} + \theta \cdot \overrightarrow{i_1} + \psi \cdot \overrightarrow{k_S}$$

لنرمز لمركبات متجه الدوران في الجملة R بالرموز p,q,r أي أن

$$\vec{\omega} = p \vec{i} + q \vec{j} + r \vec{k}$$

$$= \begin{pmatrix} Cos(\psi) & Sin(\psi) & 0 \\ -Sin(\psi) & Cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} Cos(\psi) \\ -Sin(\psi) \\ 0 \end{pmatrix}$$

و بالتالي نستنتج أن

$$\overrightarrow{i_1} = Cos(\psi)\overrightarrow{i_S} - Sin(\psi)\overrightarrow{j_S}$$

يجاد مركبات $\vec{k}=0$ $\vec{i}+0$ $\vec{j}+1$ \vec{k} أن نضع يجاد مركبات أي الجملة \vec{k} الجملة الحملة الجملة الجملة الجملة الجملة الجملة الجملة الحملة ال

$$x = 0$$
 , $y = 0$, $z = 1$

كما نضع

$$\vec{k} = x_S \ \vec{i_S} + y_S \ \vec{j_S} + z_S \ \vec{k_S}$$

فيكون حسب علاقات الانتقال

$$\begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix} = A_{\psi} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = A_{\psi} \cdot A_{\theta} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = A_{\psi} \cdot A_{\theta} \cdot A_{\phi} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} Cos\left(\psi\right) & Sin\left(\psi\right) & 0 \\ -Sin\left(\psi\right) & Cos\left(\psi\right) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos\left(\theta\right) & Sin\left(\theta\right) \\ 0 & -Sin\left(\theta\right) & Cos\left(\theta\right) \end{pmatrix} \cdot \begin{pmatrix} Cos\left(\varphi\right) & Sin\left(\varphi\right) & 0 \\ -Sin\left(\varphi\right) & Cos\left(\varphi\right) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} Cos(\psi) & Sin(\psi) & 0 \\ -Sin(\psi) & Cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos(\theta) & Sin(\theta) \\ 0 & -Sin(\theta) & Cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} Cos(\psi) & Sin(\psi) & 0 \\ -Sin(\psi) & Cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ Sin(\theta) \\ Cos(\theta) \end{pmatrix} = \begin{pmatrix} Sin(\psi)Sin(\theta) \\ Cos(\psi)Sin(\theta) \\ Cos(\theta) \end{pmatrix}$$

و بالتالي نستنتج أن

$$\vec{k} = Sin(\psi)Sin(\theta) \vec{i}_S + Cos(\psi)Sin(\theta) \vec{j}_S + Cos(\theta) \vec{k}_S$$

و لنرمز لمركبات متجه الدوران في الجملة R_S بالرموز p_S, q_S, r_S ، أي أن

$$\vec{\omega} = p_S \ \vec{i_S} + q_S \ \vec{j_S} + r_S \ \vec{k_S}$$

 $\vec{i_1}$ و لإيجاد هذه المركبات لابد من إيجاد مركبات أشعة الواحدة $\vec{i_1}$ و $\vec{i_1}$ في الجملة R_S و مركبات أشعة الواحدة أنسعة الواحدة \vec{k} و \vec{k} و ذلك باستخدام مصفوفات الانتقال بين الجمل الإحداثية التي قمنا باستنتاجها سابقاً.

بيجاد مركبات $\overrightarrow{i_1}=1$ في الجملة $\overrightarrow{i_1}=1$ بملاحظة أن $\overrightarrow{i_1}+0$ بنصع يجاد مركبات أن الجملة $\overrightarrow{i_1}=1$ بنصع

$$x_1 = 1$$
 , $y_1 = 0$, $z_1 = 0$

كما نضع

$$\vec{i}_1 = x \ \vec{i} + y \ \vec{j} + z \ \vec{k}$$

فيكون حسب علاقات الانتقال بين الجمل الاحداثية

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A_{\varphi}^{T} \cdot \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} = \begin{pmatrix} Cos(\varphi) & -Sin(\varphi) & 0 \\ Sin(\varphi) & Cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} Cos(\varphi) \\ Sin(\varphi) \\ 0 \end{pmatrix}$$

و بالتالي نستنتج أن

$$\vec{i_1} = Cos(\varphi) \vec{i} + Sin(\varphi) \vec{j}$$

يجاد مركبات $\vec{i_1}$ في الجملة R_S : بنفس الأسلوب نجد أن

$$\begin{pmatrix} x_S \\ y_S \\ z_S \end{pmatrix} = A_{\psi} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = A_{\psi} \cdot \left[A_{\theta} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \right] = A_{\psi} \cdot A_{\theta} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

$$= \begin{pmatrix} Cos(\psi) & Sin(\psi) & 0 \\ -Sin(\psi) & Cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos(\theta) & Sin(\theta) \\ 0 & -Sin(\theta) & Cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

و بالتالي نستنتج أن

$$\begin{cases} p = \theta \cdot Cos(\varphi) + \psi \cdot Sin(\varphi)Sin(\theta) \\ q = \theta \cdot Sin(\varphi) - \psi \cdot Cos(\varphi)Sin(\theta) \\ r = \varphi \cdot + \psi \cdot Cos(\theta) \end{cases}$$

بنفس الأسلوب نستنتج أن

$$\begin{cases} p_S = \theta \cdot Cos(\psi) + \varphi \cdot Sin(\theta)Sin(\psi) \\ q_S = -\theta \cdot Sin(\psi) + \varphi \cdot Sin(\theta)Cos(\psi) \\ r_S = \psi \cdot + \varphi \cdot Cos(\theta) \end{cases}$$

تسمى مجموعتي المعادلات السابقة معادلات أولر الحركية (في الجملتين الثابتة و المتماسكة).

نتيجة: لنرمز للمستقيم المار من النقطة الثابتة O و الذي يوازي متجه الدوران $\overrightarrow{\omega}$ في كل لحظة بالرمز Δ ، عندنذ من أجل أي نقطة M متماسكة مع الجسم و تقع على المستقيم Δ يكون

$$\overrightarrow{V}(M) = \overrightarrow{V}(O) + \overrightarrow{\omega} \times \overrightarrow{OM}$$

و بما أن $\overrightarrow{O}=(O)$ لكون النقطة O ثابتة و $\overrightarrow{O}=\overrightarrow{OM}\times\overrightarrow{OM}$ لأن $\overrightarrow{O}/\overrightarrow{OM}$ ، فإننا نستنتج أن $\overrightarrow{O}=\overrightarrow{O}$. أي أن سرع جميع نقاط الجسم الواقعة على المستقيم Δ معدومة. الذلك نسمي المستقيم Δ المحور الآني للدوران. و هكذا نكون قد أثبتنا المبرهنة التالية

مبرهنة (أولر - دالامبير): إن حركة الجسم الصلب حول نقطة ثابتة منه في كل لحظة هي حركة دورانية آنية حول محور آني للدوران يمر من النقطة الثابتة.

A و B نقطتان من جسم صلب يتحرك حول نقطة ثابتة منه A و تعطتان من جسم صلب يتحرك حول نقطة ثابتة منه V و ليكن V و V متجها سرعتي هاتين النقطتين، عندئذٍ نميز الحالات التالية

- ا. إذا كان متجه سرعة إحدى النقطتين معدوماً، عندئذٍ يكون المحور الآني للدوران هو المستقيم المار من هذه النقطة و النقطة الثابتة (لماذا؟).
 - ۲. إذا كان $\vec{0} \neq \vec{0}$ و $\vec{V}(A) \neq \vec{0}$ عندئذٍ نميز الحالتين التاليتين ٢

يجاد مركبات
$$\overrightarrow{k_S}=0$$
 في الجملة $\overrightarrow{k_S}=0$: بملاحظة أن $\overrightarrow{k_S}+1$ بنضع إيجاد مركبات

$$x_S = 0$$
 , $y_S = 0$, $z_S = 1$

كما نضع

$$\overrightarrow{k_S} = x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}$$

فيكون حسب علاقات الانتقال

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A_{\varphi}^{T} \cdot \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} = A_{\varphi}^{T} \cdot A_{\theta}^{T} \cdot \begin{pmatrix} x_{2} \\ y_{2} \\ z_{2} \end{pmatrix} = A_{\varphi}^{T} \cdot A_{\theta}^{T} \cdot A_{\psi}^{T} \cdot \begin{pmatrix} x_{S} \\ y_{S} \\ z_{S} \end{pmatrix}$$

$$= \begin{pmatrix} Cos\left(\varphi\right) & -Sin\left(\varphi\right) & 0 \\ Sin\left(\varphi\right) & Cos\left(\varphi\right) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos\left(\theta\right) & -Sin\left(\theta\right) \\ 0 & Sin\left(\theta\right) & Cos\left(\theta\right) \end{pmatrix} \cdot \begin{pmatrix} Cos\left(\psi\right) & -Sin\left(\psi\right) & 0 \\ Sin\left(\psi\right) & Cos\left(\psi\right) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} Cos(\varphi) & -Sin(\varphi) & 0 \\ Sin(\varphi) & Cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & Cos(\theta) & -Sin(\theta) \\ 0 & Sin(\theta) & Cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} Cos(\varphi) & -Sin(\varphi) & 0 \\ Sin(\varphi) & Cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -Sin(\theta) \\ Cos(\theta) \end{pmatrix} = \begin{pmatrix} Sin(\varphi)Sin(\theta) \\ -Cos(\varphi)Sin(\theta) \\ Cos(\theta) \end{pmatrix}$$

و بالتالي نستنتج أن

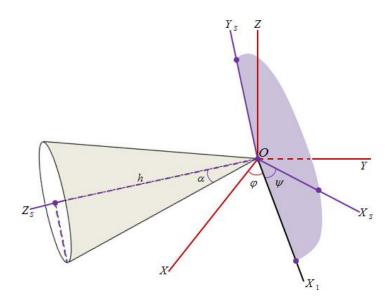
$$\overline{\vec{k}_S} = Sin(\varphi)Sin(\theta) \vec{i} - Cos(\varphi)Sin(\theta) \vec{j} + Cos(\theta) \vec{k}$$

مركبات متجه الدوران و معادلات أولر الحركية:

باستخدام العلاقات التي تم استنتاجها أعلاه يمكن بسهولة استنتاج أن

$$\vec{\omega} = \varphi \cdot \vec{k} + \theta \cdot \left[Cos(\varphi) \vec{i} + Sin(\varphi) \vec{j} \right] + \psi \cdot \left[Sin(\varphi)Sin(\theta) \vec{i} - Cos(\varphi)Sin(\theta) \vec{j} + Cos(\theta) \vec{k} \right]$$

$$= \left[\theta \cdot Cos(\varphi) + \psi \cdot Sin(\varphi)Sin(\theta) \right] \vec{i} + \left[\theta \cdot Sin(\varphi) - \psi \cdot Cos(\varphi)Sin(\theta) \right] \vec{j} + \left[\varphi \cdot + \psi \cdot Cos(\theta) \right] \vec{k}$$



أي أن وسطاء حركة المخروط هما زاوية الترنح (الاستباق) φ و زاوية الدوران الذاتي ψ أما زاوية التأرجح فهي ثابتة و تساوي $\theta = \frac{\pi}{2} - \alpha$ ، و بالتالي فإن للمخروط درجتان من الحرية.

وبالتالي فإن متجه دوران المخروط هو المتجه

$$\vec{\omega} = \varphi^{\bullet} \vec{k} + \psi^{\bullet} \vec{k}_{S}$$

و بالتعويض في معادلات أولر الحركية في الجملة الثابتة نجد أن

$$\begin{cases} p = \theta \cdot Cos(\varphi) + \psi \cdot Sin(\varphi)Sin(\theta) \\ q = \theta \cdot Sin(\varphi) - \psi \cdot Cos(\varphi)Sin(\theta) \\ r = \varphi \cdot + \psi \cdot Cos(\theta) \end{cases} \Rightarrow \begin{cases} p = \psi \cdot Sin(\varphi)Sin\left(\frac{\pi}{2} - \alpha\right) \\ q = -\psi \cdot Cos(\varphi)Sin\left(\frac{\pi}{2} - \alpha\right) \\ r = \varphi \cdot + \psi \cdot Cos\left(\frac{\pi}{2} - \alpha\right) \end{cases} \Rightarrow$$

$$\begin{cases} p = \psi^* Sin(\varphi) Cos(\alpha) \\ q = -\psi^* Cos(\varphi) Cos(\alpha) \\ r = \varphi^* + \psi^* Sin(\alpha) \end{cases}$$

وقد كان بالإمكان الحصول على هذه المعادلات بالإسقاط المباشر في الشكل للمتجه $\overline{k_S}$ على الجملة الثابتة.

- $\overrightarrow{V}(A)$ إذا كان (A) و $\overrightarrow{V}(B)$ غير متوازيين، عندنذٍ نرسم المستوي المار من النقطة A و يعامد $\overrightarrow{V}(B)$ فيكون المحور الأني للدوران Δ هو الفصل و المشترك لهذين المستويين (لماذا؟).
- إذا كان (B) إذا كان (B) (A) عندئذٍ يكون (B) (B) (B) إذا كان (B) عندئذٍ يكون النقطة والمحور الأني الدوران (B) هو المحور المار من النقطة (B) و الذي يوازي المتجه (B) (الماذا؟).

نستنتج أنه يمكن دائماً تعيين المحور الآني للدوران هندسياً في حال معرفة متجهي سرعة نقطتين مختلفتين من الجسم غير النقطة الثابتة. و لتعيين المحور الآني للدوران تحليلياً نلاحظ أن معادلات هذا المحور هي معادلات مستقيم في الفراغ يمر من النقطة الثابتة و يوازي متجه دوران الجسم في كل لحظة، و يتعين في الجملة الثابتة بالمعادلات

$$\frac{x}{p} = \frac{y}{q} = \frac{z}{r}$$

أما في الجملة المتماسكة فيتعين المحور الآني للدوران بالمعادلات

$$\frac{x_S}{p_S} = \frac{y_S}{q_S} = \frac{z_S}{r_S}$$

ملاحظة: يتغير المحل الهندسي للمحور الآني للدوران Δ مع الزمن في الجملتين الثابتة R و المتماسكة R_S ، إلا أنه يمر دائماً من النقطة الثابتة O. و بالتالي سيرسم هذا المحور مع الزمن سطحين لمخروطين في هاتين الجملتين.

تعريف: نسمي المحل الهندسي للمحور الآني للدوران في الجملة الثابتة مخروط القاعدة ونسمي المحل الهندسي للمحور الأني للدوران في الجملة المتماسكة مخروط المتدحرج. و بالتالي ستؤول حركة جسم حول نقطة ثابتة منه إلى حركة مخروط المتدحرج على مخروط القاعدة بحيث يشترك المخروطان في كل لحظة في المحور الآني للدوران.

مثال (۱): مخروط دوراني نصف زاوية رأسه α و ارتفاعه h يتحرك حول رأسه الثابت O بحيث يستند دائماً على المستوي الأفقى الثابت OXY. و المطلوب

- ١. عين الوسطاء المستقلة لحركة المخروط و عدد درجات الحرية للمخروط
 - ٢. عين متجه دوران المخروط ومعادلات أولر الحركية في الجملة الثابتة
 - ٣. عين معادلات المحور الآني للدوران في الجملة الثابتة

الحل: إن حركة المخروط هي تركيب لحركتين دورانيتين فقط و هي دوران النرنح (الاستباق) و الدوران الذاتي و لا وجود لدوران التأرجح لكون المخروط لا يستطيع الانفكاك عن المستوي OXY، كما هو موضح في الشكل.

تعطى معادلات المحور الآني للدوران في الجملة الثابتة بالشكل

$$\vec{\omega} = \varphi^{\bullet} \vec{k} + \psi^{\bullet} \vec{k}_{S}$$

و بالتعويض في معادلات أولر الحركية في الجملة الثابتة نجد أن

$$\begin{cases} p = \theta \cdot Cos(\varphi) + \psi \cdot Sin(\varphi)Sin(\theta) \\ q = \theta \cdot Sin(\varphi) - \psi \cdot Cos(\varphi)Sin(\theta) \\ r = \varphi \cdot + \psi \cdot Cos(\theta) \end{cases} \Rightarrow \begin{cases} p = \psi \cdot Sin(\varphi)Sin\left(\frac{\pi}{2}\right) \\ q = -\psi \cdot Cos(\varphi)Sin\left(\frac{\pi}{2}\right) \\ r = \varphi \cdot + \psi \cdot Cos\left(\frac{\pi}{2}\right) \end{cases}$$

$$\begin{cases} p = \psi^* Sin(\varphi) \\ q = -\psi^* Cos(\varphi) \\ r = \varphi^* \end{cases}$$

وقد كان بالإمكان الحصول على هذه المعادلات بالإسقاط المباشر في الشكل للمتجه $\overline{k_S}$ على الجملة الثابتة.

تعطى معادلات المحور الأني للدوران في الجملة الثابتة بالشكل

$$\frac{x}{\psi \cdot Sin(\varphi)} = \frac{y}{-\psi \cdot Cos(\varphi)} = \frac{z}{\varphi} \implies \begin{cases} y + Cot(\varphi) x = 0 \\ \frac{\varphi}{\psi} \cdot x - Sin(\varphi) z = 0 \end{cases}$$

مثال (٣): قرص دائري نصف قطرة a يستطيع الحركة حول مركزه الثابت في مركز الإحداثيات O بحيث يستند محيط القرص دائماً على مستو ِ أفقى Π يوازي المستوي الثابت OXY و يبعد عنه مسافة مقدارها h بحيث أن h < a. و المطلوب

- ١. عين الوسطاء المستقلة لحركة القرص و عدد درجات الحرية لهذه الحركة
- ٢. عين متجه دوران القرص ومعادلات أولر الحركية في الجملتين الثابتة و المتماسكة مع القرص
 - ٣. عين معادلات المحور الآني للدوران في الجملتين الثابتة و المتماسكة مع القرص

الحل: بفرض أن محاور الجملة المتماسكة R_S كانت في لحظة البدء منطبقة على محاور الجملة الثابتة R، و للوصول إلى الوضعية النهائية لمحاور الجملة المتماسكة نقوم أولاً بدوران الترنح (الاستباق) بزاوية φ حول المحور OZ ليصبح المحور OX_S منطبق على المحور منطبق منطبق على المحور منطبق منطبق على المحور منطبق على المحور منطبق منطبق على المحور منطبة المحور منطبق منطبق

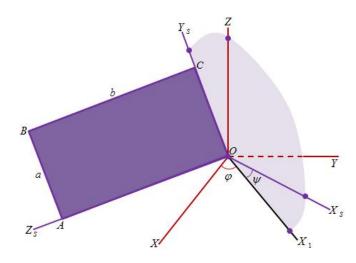
$$\frac{x}{\psi \cdot Sin(\varphi)Cos(\alpha)} = \frac{y}{-\psi \cdot Cos(\varphi)Cos(\alpha)} = \frac{z}{\varphi \cdot + \psi \cdot Sin(\alpha)} \Rightarrow$$

$$\begin{cases} y + Cot(\varphi)x = 0 \\ x = \left(\frac{\varphi^{\bullet}}{\psi^{\bullet}Sin(\varphi)Cos(\alpha)} + \frac{Tan(\alpha)}{Sin(\varphi)}\right)z \end{cases}$$

مثال (۲): صغيحة مستطيلة OABC بعداها a و d تستطيع الحركة حول رأسها الثابت O بحيث يبقى الضلع ملاصق للمستوي الأفقى الثابت OXY. و المطلوب

- ١. عين الوسطاء المستقلة لحركة المخروط و عدد درجات الحرية للمخروط
 - ٢. عين متجه دوران المخروط ومعادلات أولر الحركية في الجملة الثابتة
 - ٣. عين معادلات المحور الآني للدوران في الجملة الثابتة

الحل: إن حركة الصفيحة هي تركيب لحركتين دورانيتين فقط و هي دوران الترنح (الاستباق) و الدوران الذاتي و لا وجود لدوران التأرجح لكون الضلع OA من الصفيحة لا يستطيع الانفكاك عن المستوي OXY، كما هو موضح في الشكل.



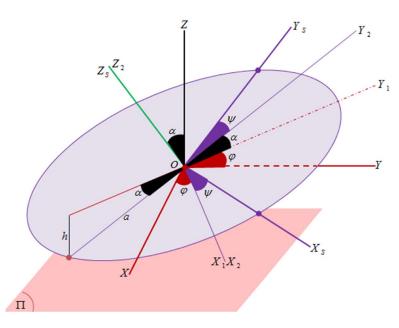
أي أن وسطاء حركة الصفيحة هما زاوية الترنح (الاستباق) φ و زاوية الدوران الذاتي ψ أما زاوية التأرجح فهي ثابتة و تساوي $\frac{\pi}{2}$ ، و بالتألي فإن للصفيحة درجتان من الحرية.

تعطى معادلات المحور الآني للدوران في الجملة الثابتة بالشكل

$$\frac{x}{h \ \psi^* Sin(\varphi)} = \frac{y}{-h \ \psi^* Cos(\varphi)} = \frac{z}{\sqrt{a^2 - h^2} \ \varphi^*} \quad \Rightarrow \quad \begin{cases} y + Cot(\varphi) \ x = 0 \\ \frac{\sqrt{a^2 - h^2}}{h} \frac{\varphi^*}{\psi^*} x - Sin(\varphi) \ z = 0 \end{cases}$$

و باستخدام معادلات أولر الحركية في الجملة المتماسكة نوجد معادلات المحور الآني للدوران في الجملة المتماسكة.

المحور OX_1 حتى يصبح القرص مستنداً على المستوي Π بشكل دائم، لاحظ أن $Sin(\alpha) = h/a = Const$. ثقوم بالدوران الذاتي بزاوية ψ حول المحور OZ_S لنصل إلى الوضعية النهائية للجملة المتماسكة R_S .



و بالنالي فإن حركة القرص و كما هو مبين في الشكل هي تركيب لحركتين دورانيتين فقط، دوران الترنح (الاستباق) و الدوران الذاتي، ولا وجود لدوران التأرجح لكون القرص يستند دائماً على المستوي الثابت Π ولا يستطيع الانفكاك عن هذا المستوي. ويصبح متجه دوران القرص هو المتجه

$$\vec{\omega} = \varphi^{\bullet} \vec{k} + \psi^{\bullet} \vec{k}_{S}$$

و بالتعويض في معادلات أولر الحركية في الجملة الثابتة نجد أن

$$\begin{cases} p = \theta \cdot Cos(\varphi) + \psi \cdot Sin(\varphi)Sin(\theta) \\ q = \theta \cdot Sin(\varphi) - \psi \cdot Cos(\varphi)Sin(\theta) \\ r = \varphi \cdot + \psi \cdot Cos(\theta) \end{cases} \Rightarrow \begin{cases} p = \psi \cdot Sin(\varphi)Sin(\alpha) \\ q = -\psi \cdot Cos(\varphi)Sin(\alpha) \\ r = \varphi \cdot + \psi \cdot Cos(\alpha) \end{cases}$$

$$p = \frac{h}{a} \psi$$
'Sin (φ) , $q = -\frac{h}{a} \psi$ 'Cos (φ) , $r = \frac{\sqrt{a^2 - h^2}}{a} \varphi$ '

وقد كان بالإمكان الحصول على هذه المعادلات بالإسقاط المباشر في الشكل للمتجه $\overline{k_S}$ على الجملة الثابتة.