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New perspective on targeting the tumor
suppressor p53 pathway in the tumor
microenvironment to enhance the efficacy
of immunotherapy
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Abstract

About 50% of human cancers harbor somatic mutations of the tumor suppressor p53 (p53 or Trp53) gene. Many of
those mutations result in the inactivation of the p53 pathway and are often associated with the stabilization and
accumulation of mutant p53 proteins. Therefore, increased p53 expression in tumors is frequently used as a
surrogate marker for p53 mutation and inactivation. Moreover, this elevated p53 expression also makes it an ideal
tumor associated antigen (TAA) for cancer vaccines. Recent advances in our understanding of p53 as a crucial
transcription factor reveal that p53 is an important sensor of cellular stress under genotoxic, chemotoxic,
pathological, and even normal physiological conditions. Experimental and clinical observations by our laboratory
and others have demonstrated that p53 also participates in immune regulation as p53 dysfunction skews host
immune responses towards pro-inflammation, which further promotes tumor progression. Furthermore, recent
studies using a genetic approach revealed that p53-restoration or re-activation led to tumor regression and
clearance, which were at least partially caused by the activation of innate antitumor immunity. Since many of the
currently used cancer therapeutics, including radiotherapy and chemotherapy, disrupt tumor growth by inducing
DNA damage via genotoxic or chemotoxic stress, which activates the p53 pathway in the tumor microenvironment,
we postulate that some of those observed therapeutic benefits might also be partially mediated through their
immune stimulatory effects. Here, we briefly review our current understanding of the potential cellular and
molecular mechanisms by which p53 participates in immune regulation and, subsequently, extend our discussion
to the immunostimulatory potential of existing and new approaches of targeting the p53-pathway to alter the
immunological landscape of tumors for maximizing immunotherapy outcome.
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Introduction
The tumor suppressor p53 (also called transformation re-
lated protein 53, Trp53), was first described in 1979 as
an oncogene, but was subsequently cloned and charac-
terized as a tumor suppressor gene in its wild-type con-
figuration in 1989 [1-4]. It is now known that p53
encodes a crucial transcription factor controlling the life
and death of a cell and is the most frequently mutated
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gene in tumors [5-7]. Generally, about 50% of human tu-
mors harbor p53 mutations, mostly missense, although the
frequency varies among different tumor types [5-7]. These
mutations often cause conformational changes of the p53
protein, which consequently impairs its DNA binding cap-
acity, resulting in loss of p53 function and reduced sensitiv-
ity to apoptosis or senescence, a permanent status of
irreversible cell cycle arrest [7-9]. Furthermore, these con-
formational changes often stabilize the p53 protein resulting
in an elevated p53 level in tumors, which is frequently used
as a surrogate marker of p53 mutation [5-7,9]. Experimen-
tal and clinical evidence suggests that both mutant and
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wild-type p53 are immunogenic because anti-p53 anti-
bodies and p53 antigen-specific T cells are detected in
tumor patients [10-12]. Thus, both forms of p53 have been
employed as tumor associated antigens (TAAs) in tumor
vaccine clinical trials [13-15].
Even though p53 is the best studied gene as the result

of 30 years extensive research, our comprehension and
appreciation of its complexity in regulating many crucial
biological processes are far from complete [4,9,16-18].
Immunologically, besides using p53 as a TAA, whether
p53 mutation and/or dysfunction imposes immuno-
logical consequences of promoting tumorigenesis has
largely been unexplored. Numerous experimental and
clinical results demonstrate that environmentally in-
duced damage and genetic instability are associated with
p53 dysfunction and inflammation [19-21]. Now that
chronic inflammation is a well-accepted hallmark of can-
cer [22-24], it is plausible that p53 dysfunction may also
contribute immunologically to tumorigenesis and tumor
progression by altering host immune responses. In fact,
recent results from our laboratory and others have dem-
onstrated that p53 dysfunction skews tumor milieu to-
wards pro-tumor inflammation [25-27], whereas p53
reactivation or restoration reverses the immunological
landscape towards antitumor immunity [28-30]. Thus, it
will be important for us to comprehend the mechanism
of p53 activation-induced antitumor immunity and ap-
preciate the unintended immunological components of
conventional non-immunotherapy regimens that activate
the p53 pathway. As the focus of this perspective review
is on the involvement of p53 in immune modulation, we
only present a brief and simplified view of the cellular
and molecular pathways mediating p53 regulation and
function. Subsequently, we extend our review and elab-
orative discussion to the immunological aspect of p53
function. We will conclude with new perspectives on fu-
ture applications of maximizing antitumor efficacy by
combining therapies targeting the p53 pathway with ac-
tive immunotherapy.

Review
Trp53 - the master regulator of stress response and its
canonical mechanism of tumor suppression
Trp53 is a master transcription factor that regulates the
expression of a plethora of genes involved in crucial bio-
logical processes, many of which encode proteins that
control the cell cycle or induce apoptosis [7,8,31]. Be-
cause of its critical impact on cell fate, cellular p53 ac-
tivity must be precisely controlled. Usually, p53 is
ubiquitously expressed in almost all cell types, but is
barely detectable under normal physiological conditions
in unstressed cells [7,8]. This low basal p53 level is con-
trolled and regulated by its inhibitor molecules, MDM2
(mouse double minute 2 homolog) and MDM4 (also
called MDMX). MDM2, an E3 ubiquitin ligase and the
major regulator of p53 stability and activity, promotes
the rapid degradation of p53 and prevents it from bind-
ing to the promoters of p53 target genes [32,33].
When a cell incurs DNA damage by genotoxic, che-

motoxic stress, or receives aberrant signals from onco-
gene activation, p53 is activated causing an elevated
level of p53 associated with its acetylation and phos-
phorylation (Figure 1) [7-9]. These post-translational
modifications of p53 prevent its sequestration by
MDM2, leading to its increased stability [32,33]. Acti-
vated p53 subsequently transactivates multiple molecu-
lar pathways, which induce cell cycle arrest and/or
senescence via upregulating p21, the cyclin-dependent
kinase inhibitor 1, and apoptosis via promoting puma
(p53 upregulated modulator of apoptosis), noxa, or bax
(Bcl2-assocated X protein).
Recent emerging evidence reveals that p53 can also be

activated by various physiological and pathological
stressors, including hypoxia, ribosomal stress, endoplas-
mic reticulum (ER) stress, metabolic stress, nutrient
deprivation, viral infection, and psychological stress
[9,16,17] (Figure 1). Thus, as a crucial sensor of cellular
stress, p53 plays an important role in ensuring proper
health and function of all cells by dictating their fate of
apoptosis, senescence, or transient cell cycle arrest, de-
pending on the level and nature of the stress as well as
the severity and reversibility of the damage that cells
incur (Figure 1) [7,8,34-37]. Though severe stress and
unrepairable damage leads to apoptosis or senescence,
modest stress and repairable damage causes transient
cell cycle arrest. Cells will re-enter the cell cycle to pro-
duce progeny once the damage is repaired (Figure 1).
This well regulated induction of apoptosis and senes-
cence is considered the major mechanism by which p53
suppresses tumor development and ensures genome
stability. Therefore, p53 is regarded as the caretaker,
gatekeeper, and guardian of the genome [7,8,31].

Non-canonical and non-cell autonomous mechanisms of
p53 mediated tumor suppression
In the past decade, compelling evidence reveals that p53
participates in regulating a wide array of biological pro-
cesses throughout the entire lifespan of the organism
[4,9,16,18,38-40]. Thus, it is not surprising that p53 dys-
function may result in dysregulation of many biological
processes, such as stem cell homeostasis, metabolism, au-
tophagy, angiogenesis, migration, and invasion [4,17,41-43],
all of which are linked to the hallmarks of cancer [23,44].
For instance, one of the hallmarks is the altered meta-

bolic pathway in cancerous cells to glycolysis as the pre-
dominant source of ATP production, the so-called
Warburg effect [45]. Recent studies demonstrated that
p53 suppresses glycolysis in three ways: (1) reducing Glut3



Figure 1 Trp53 is a crucial sensor of cellular stress and a guardian of the genome. The tumor suppressor p53 is ubiquitously expressed in
almost all cell types but is barely detectable under physiological conditions in unstressed cells. When a cell incurs various environmental or
endogenous stresses, such as DNA damage, chemotoxin, oncogene activation, hypoxia, nutrient deprivation, replicative ribosomal stress, and viral
infection, cellular p53 is activated causing an elevated level of p53 protein associated with its acetylation and phosphorylation. Activated p53
subsequently transactivates multiple molecular pathways, which induce apoptosis, senescence (a permanent non-reversible cell cycle arrest), or
transient cell cycle arrest, depending on the level and nature of the stress, as well as the severity and reversibility of the damage that cells incur.
Whereas severe stress and irreparable damage lead to apoptosis or senescence, modest stress and repairable damage cause transient cell cycle
arrest for repair. The cell will re-enter the cell cycle to produce progeny once the damage is repaired. Thus, p53 plays an important role in
ensuring proper health and function of all cells and is regarded as the caretaker, gatekeeper, and guardian of the genome.
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expression and, thus, suppressing glucose uptake; (2) en-
hancing the expression of mitochondrial respiratory en-
zyme SCO2 (synthesis of cytochrome c oxidase); and (3)
promoting the expression of TIGAR (TP53-induced gly-
colysis and apoptosis regulator) [35,46-48]. Thus, p53 in-
activation results in a switch to glycolysis by enhancing
glucose uptake and reducing SCO2 and TIGAR. These ob-
servations shed light onto the molecular mechanism by
which the Warburg effect in cancers can be caused by p53
inactivation/dysfunction. Other studies also revealed that
p53 activation promotes autophagy either directly via
DRAM (damage regulated autophagy mediator) or indir-
ectly via the AMP-activated protein kinase (AMPK) and
the mTOR pathway [49-51]. In addition, p53 is also shown
to suppress cell invasion by repressing the NF-kB mediated
podia intrusion/formation and to inhibit epithelial-to-
mesenchymal transition (EMT) by suppressing the
expression of SNAIL and ZEB (members of zinc-finger
transcription factors) [42,52-54]. Therefore, the tumor sup-
pressive function of p53 is partially mediated by altering
cellular metabolism, motility, and invasion [55,56], which
are considered non-canonical mechanisms.
In addition to the aforementioned direct effects on
tumor cells, p53 also suppresses tumorigenesis via
changing the function and property of cells adjunct to
tumors, such as cancer associated fibroblasts (CAFs).
Clinical and experimental evidence confirms the exist-
ence of somatic p53 mutations in CAFs and highly in-
flamed pathological tissues [57-60]. Moreover, p53
mutations in CAFs of breast and prostate cancer pa-
tients, whose cancer cells maintain wild-type p53
function, were associated with an increased rate of
metastasis and poor prognosis [5,58,59,61]. These re-
sults suggest that p53 dysfunction in CAFs serves as a
selective pressure for the transformation of adjacent
epithelial cells [62]. This tumor suppressive effect of
p53 via altering the milieu of transformed cells is
regarded as the non-cell-autonomous mechanism
[57,62]. Accumulating evidence suggests that tumor
progression and metastases are markedly affected by
the molecular and cellular constituents surrounding
the tumors, the so-called tumor microenvironment
(TME) [63-65]. It is now greatly appreciated that both
the cellular and molecular components of the TME
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are highly complex. The cellular compartment con-
sists of immune cells of T-, B-, NK-, and myeloid cells
and non-hematopoietic stromal cells, including CAFs,
lymphatic, and blood endothelial cells (Figure 2). The mo-
lecular components that greatly impact tumor progression
include integrins and other extracellular matrix proteins,
cytokines, and chemokines. Mechanistic studies revealed
that the pro-tumor effect of p53-dysfunctional CAFs is
mediated through enhanced production of cytokines and
chemokines, including SDF-1 and IL-6, which further af-
fected immune cell composition and function within the
TME [25,57,66,67]. Together, these observations showed
that p53 dysfunction in tumors or other populations
within the TME also promotes tumor progression and me-
tastasis via mechanisms including, but not limited to, the
suppression of apoptosis and/or senescence.

Immunosuppressive effects of p53 dysfunction on the
host immunological landscape
Compelling evidence demonstrates that chronic inflam-
mation plays a vital role in tumor initiation, progression,
and metastasis [20,23,24,68,69]. Nevertheless, it has not
been explored systemically whether p53 participates in
immune regulation or whether p53 inactivation causes
chronic inflammation, further promoting tumorigenesis
and tumor progression.
Interestingly, it was observed as early as the 1980s that

p53 expression was elevated in mitogen-stimulated or T
cell receptor (TCR)-ligation activated T cells [70,71]. Sub-
sequent experiments and clinical observations further
Figure 2 Cellular constituents of the tumor microenvironment that sh
microenvironment consists of complex molecular and cellular constituents
landscape, i.e. activated antitumor immunity or tumor-induced immune to
of T and B lymphocytes, NK cells, macrophages, dendritic cells, and other m
greatly impacted by cells of the non-hematopoietic compartment, includin
lymphatic and blood vasculature. Moreover, p53 inactivation has been repo
as CAFs, which further promotes immunosuppression and augmented tum
enhance antitumor immunity should not limited to tumor cells, but extend
as well.
confirmed the activation or alteration of the p53 pathway
during immune responses and in inflamed pathological tis-
sues; however, the immunological significance of p53 activa-
tion remains unknown [72-75]. Based on the observations
that p53 inactivation exacerbated autoimmune disease in
mice [76,77], we and others proposed that p53 suppresses
autoimmunity by inhibiting inflammation [20,21,26,76]. Spe-
cifically, Zheng et al. showed that p53 inactivation enhanced
the production of inflammatory cytokines IL-1, −6, and −12
by macrophages [76] while we demonstrated that the genetic
deletion of p53 enhanced IL-6-induced Th17 differentiation
and promoted the spontaneous development of autoimmun-
ity in p53nullCD45.1 mice [26]. Because Th17/IL-17 activity
has been linked to inflammation, autoimmunity, and tumori-
genesis [78-80], these observations further support the role
of p53 inactivation in inflammation-induced tumorigenesis.
Importantly, this p53 inactivation mediated elevation

of inflammatory molecules is not restricted to immune
cells because p53 mutations/inactivation in CAFs also
augment their production of pro-inflammatory mole-
cules [25,58,59,61], which is associated with increased
metastasis and poor prognosis [66,81,82]. It is note-
worthy that in cells maintaining wild-type p53, func-
tional inactivation of the p53 pathway can also be
instigated by other means, such as overexpression of
the p53 inhibitor MDM2 or the viral proteins HPV E6
and HLTV-1 Tax, all of which have been linked to
tumorigenesis [83-88].
Mechanistically, it has been suggested that p53 activ-

ity has an inverse correlation with that of NF-κB, a
ape the immunological landscape of tumor. The tumor
. Tumor regression or progression is dictated by its immunological
lerance/immunosuppression, which is reflected by the activation status
yeloid derived cells. Importantly, the immunological landscape is also
g cancer associated fibroblasts (CAFs) and endothelial cells of the
rted to occur in various cells within the tumor microenvironment, such
or progression. Therefore, targeted activation of the p53 pathway to
to cellular compartments of the CAFs and potentially immune cells
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major transcription regulator of inflammatory response
[21,89,90]. It is believed that the reciprocal activities of
the p53 and NF-κB are the result of their competition
for the limited transcription coactivator p300 and the
CREB-binding protein [21,89,90]. Recent studies also
demonstrated that p53 inhibits NF-κB-dependent genes
by directly suppressing the promoter activity of NF-κB
subunit p65 or indirectly repressing the activity of
IKKα, a subunit of IκBα kinase complex [48,90,91].
Thus, p53 suppresses the expression of IL-6, Cox-2, and
iNOS, and thereby inflammation, by inhibiting NF-κB
activity [20,21,89]. Likewise, p53 inactivation causes the
hyperactivity of NF-κB in p53null T cells, macrophages,
and intestinal epithelium, leading to chronic inflamma-
tion and tumorigenesis as shown by us and others
[26,76,91,92].
It is noteworthy that the reciprocal activity of the

p53 and NF-κB is not exclusive because the co-
activation of p53 and NF-κB was also observed under
certain circumstances [21,93]. For instance, Lowe and
colleagues demonstrated that p53 and NF-κB co-
regulate IL-6 production in human macrophages [93].
Additionally, it has been well established that senes-
cent cells secrete numerous inflammatory cytokines,
chemokines, growth factors, and other soluble proteins
to the extracellular space, which subsequently activate
NF-κB [94,95]. Interestingly, the p53-dependent re-
lease of the chromatin protein high-mobility group box
1 (HMGB1) by senescent cells is a major mediator of
their secretion of other inflammatory molecules via acti-
vation of TLR-4 and NF-κB [95]. Thus, the co-activation of
p53 and NF-κB also occurs in senescent cells. Nevertheless,
it is not yet fully understood how pro-inflammatory mole-
cules produced by senescent cells promote antitumor im-
munity in certain conditions but enhance pro-tumorigenic
inflammation under other circumstances [30,62,94].
Altogether, these results suggest that p53 may serve as

a general suppressor of innate immunity and inflamma-
tion. Trp53 dysfunction in either hematopoietic or non-
hematopoietic populations alters the immunological
landscape of the host/TME to pro-inflammation, thereby
immunologically promoting tumorigenesis and tumor
progression.

New insights into the immunological components of
therapeutic interventions that activate the p53 pathway
It is now appreciated that activation of anti-tumor immunity
is indispensable for the therapeutic benefits of conventional
therapies [96-99]. Recent mechanistic studies illustrated that
only those therapies eliciting tumor immunogenic cell death
(ICD), such as radiotherapy and some chemotherapy regi-
mens, induce a robust anti-tumor immunity [96-100]. On
the other hand, therapies causing non-immunogenic death
of tumors fail to stimulate a strong antitumor immunity as
they are unable to overcome tumor-induced immune toler-
ance. So far, the identified molecular processes crucial for
ICD include the following: (1) the exposure of ER proteins,
such as calreticulin (CRT), at the cell surface; (2) the secre-
tion of ATP to extracellular space, which is frequently associ-
ated with autophagy; and (3) the release of HMGB1 to
extracellular space [96,99].
Although it is well established that radiotherapy and

most of the chemotherapy regimens induce DNA dam-
age via genotoxic and chemotoxic stress, which activate
the p53 pathway in cells maintaining functional p53
(Figure 1) [7,8], it is yet to be verified clinically whether
p53 activation induced in those therapies contribute to
the induction of antitumor immunity. Experimentally,
animal studies with p53 re-activation or restoration in
either tumors or stroma confirmed that tumor regres-
sion and clearance are dependent on senescence-
induced antitumor immunity [30,62]. As discussed
earlier, senescent cells secret HMGB1, inflammatory cy-
tokines, and chemokines to extracellular space [95]. It is
conceivable that p53 activation-induced cellular senes-
cence may subsequently trigger autophagy or ICD of
cells in the TME, thereby activating antitumor immun-
ity. Alternatively, it is also possible that direct killing of
tumors by activated NK cells as the result of p53-
activation alters the immunological milieu of tumors to
immune stimulatory despite not meeting all the afore-
mentioned characteristics of ICD. In fact, it has been
demonstrated that DNA damage and/or p53 activation,
either dependent or independent of each other, upregu-
late the expression of NKG2D ligand such as ULBP2,
greatly enhance NK mediated tumor elimination, and
alter the antigen presentation capacity of tumors and
stromal cells toward immune-stimulation [101-106].
Subsequently, this leads to the production of type I
interferon (IFN), activation of M1 macrophages, en-
hancement of the antigen presentation capacity of tu-
mors, APCs, and stromal cells, and recruitment of
immune cells to the TME, all of which synergistically
promote antitumor immunity [97-100,107-111]. Fur-
thermore, Taura et al. and Shatz et al. demonstrated that
p53 activation upregulates the expression and function
of toll-like receptors (TLR)-3 or −8 in human cancers,
lymphocytes, alveolar type I cells, and epithelial cell
lines [27,112,113]. Likewise, p53 also interacts with IFN
regulatory factors (IRF), specifically IRF-5 and IRF-9,
and IFN-stimulated gene factor 3 (ISGF3) at various
phases of anti-viral immunity [114-116], as well as in
cancer cells treated with IFN and a DNA damage agent
[117,118]. As both TLR ligands and IFN-alpha are po-
tent immune adjuvants that have been employed for
cancer immunotherapy, it is also plausible that some of
the immunostimulatory effects of conventional therap-
ies that induce p53 activation are mediated through
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enhancing the TLR and IFN pathways. Certainly, more
in-depth studies are necessary before any definitive con-
clusions are drawn.
Together, these results suggest that p53-activation ei-

ther in tumors or stroma by some conventional therap-
ies elicits both innate and adaptive anti-tumor immunity
via various molecular mechanisms. It has yet to be clari-
fied whether some of the observed immune-stimulatory
effects might be mediated through a p53-independant
pathway, especially in tumors incurring p53 mutations.
Nevertheless, it is also important and clinically relevant
to examine whether immune responses initiated by p53-
activation in CAFs that maintain functional p53 may
overcome the unresponsiveness or, even worse, immune
tolerance induced by tumors that incur p53 mutations.
Further studies are necessary to clarify the contribution
and quality of p53-activation in promoting antitumor
immunity for improving the outcome of immunotherapy
[96,98,100,109,110,119].

Therapeutic strategies of targeted activation and/or
restoration of the p53 pathway as adjuvant for enhancing
antitumor immunity – current status and new perspective
As discussed above, the immunostimulatory properties of
radiotherapy and chemotherapy have received increasing
appreciation [98-100,107,109-111]. Importantly, some of
the cellular and molecular processes that dictate the out-
come of immune stimulation vs. tolerance are better com-
prehended, although still evolving [96,99]. This better
understanding provides a mechanistic explanation of why
some of the apparently similar therapies are immunosti-
mulatory at times, but immunosuppressive under other
circumstances [96-100,120]. It is also noteworthy that high
dose systemic radiation or chemotherapy regimens may
impose the side effects of inducing mutagenesis and drug
resistance in tumors, besides the lymphoid-hematopoietic
toxicity to the host [98,102]. Therefore, it is important for
us to better define the following: (1) whether the level or
duration of p53 activation dictates the immunological out-
come of antitumor immunity so that unnecessary damages
can be controlled or avoided altogether, and (2) whether
the tumor/host p53 dysfunction, either pre-existing or
therapy-induced, may skew antitumor immunity to pro-
tumor inflammation. Clarification of these issues will fa-
cilitate the development of more effective strategies com-
bining p53-activation induced ICD/senescence with active
immunotherapy to maximize therapeutic benefits.
Because p53 mutation/inactivation is one of major causes

of cancer, targeting the p53 pathway via viral vector medi-
ated p53 delivery or small molecule p53-activators has been
an important approach for cancer treatment over the past
decades and is still rapidly evolving [121-123]. Different
from other conventional therapies, these approaches have
greatly reduced risk of lymphoid-hematopoietic toxicity
and mutagenesis because they do not induce DNA damage.
On the other hand, the immunological properties of most
of the currently tested p53-activation regimens have not
been explored because they were developed preceding our
comprehension and appreciation of p53 activation to anti-
tumor immunity. Here, we will focus our review on the ap-
proaches directly targeting the p53 pathway, other than the
radiotherapy and chemotherapy that we already discussed
above, with insights on their potential immunological ef-
fects and capacity for promoting antitumor immunity.

Viral vector-mediated p53 re-introduction or restoration
gene therapy
Adenoviral delivery of exogenous p53 (Ad-p53) to tumors
represents one of the first series of p53 targeted clinical
trials for multiple tumor types worldwide [124-126]. Des-
pite demonstrated p53-induced apoptosis, the clinical out-
come of Ad-p53 therapy has been less than satisfactory
due to limited intra-tumor delivery. To improve the deliv-
ery efficacy and utilize the p53-inactivated nature of many
tumors, more advanced vector systems have been devel-
oped. For instance, the oncolytic adenovirus ONYX-015 is
capable of replicating only in p53-defective tumors and in-
ducing their apoptosis [127-129]. So far, these viruses
showed limited therapeutic efficacy [127-131]. Due to lack
of immunological data, we can only speculate that the less
than satisfactory efficacy is due to either the limited activa-
tion of p53 not sufficient to induce antitumor immunity
[124-126] or the oncolytic virus induced tumor death is
non-ICD leading to immune tolerance [127-129]. Interest-
ingly, a clinical trial combining Ad-p53 with chemother-
apy by Nemunaitis and colleagues showed certain levels of
clinical response [130], implying that an elevated p53 ac-
tivity in the TME, potentially stromal cells that maintain
p53 function, subsequently enhanced antitumor efficacy.
However, a more definitive conclusion cannot be drawn in
the absence of clinical assessment of immune responses
and p53 activity associated with this trial.

Small molecule based therapy targeting the p53-MDM2 axis
The E3 ubiquitin ligase MDM2 is a crucial p53 inhibitor.
Many tumors, especially hematopoietic malignancies, ex-
hibit loss of p53 function as the result of MDM2 amplifica-
tion while maintaining wild-type p53 [32,132]. To target
this MDM2-amplification induced functional p53 inactiva-
tion, small molecule MDM2 antagonists were developed to
re-activate the p53 pathway [132,133]. For instance, Nutlin-
3, one of the MDM2 antagonists that occupies the p53
interacting pocket of MDM2, enacts anti-tumorigenic and
anti-metastatic effects by preventing p53 degradation,
thereby selectively inducing apoptosis and/or senescence of
tumor cells [133,134]. Similarly, RITA (reactivation of p53
and induction of tumor cell apoptosis), another small mol-
ecule that inhibits the binding of HDM2 (human double
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minus-2, the human analogue of MDM2), also induces
tumor specific p53 activation [132,135]. Overall, the thera-
peutic effects of these pharmacological p53-activators re-
quire the existence of wild-type p53, as they are ineffective
in tumors with mutant p53. Although most of the pub-
lished studies focus on MDM2 inhibition-induced tumor
cell apoptosis, a couple of recent observations demon-
strated that Nultin-3 also regulates host immune response
by modulating the immunological function of dendritic
cells or other antigen presenting cells [136,137], making it a
potential candidate of immunotherapy adjuvant. To fully
appreciate the effects and quality of p53 activation in pro-
moting antitumor immunity, additional studies to address
dose-dependent effects of Nultin-3 or RITA in mediating
p53 activation and antitumor immunity are necessary. Fur-
thermore, our better understanding of their cellular and
molecular mechanisms of immune activation will greatly
expand their clinical application for immunotherapy.

Restoration of mutant p53 to wild-type configuration and
function
Since many p53 mutants are associated with a conform-
ational change that hinders its DNA binding and trans-
activation capacity, it is rationalized that small molecules
that revert the mutant p53 to its wild-type configuration
will restore p53 function. Indeed, based on crystallo-
graphic structural and computational analyses, PRIMA-1
(p53 reactivation and induction of massive apoptosis-1)
and MIRA-3 (mutant p53 reactivation and induction of
rapid apoptosis in vivo) were developed to convert mu-
tant p53 and restore p53 function leading to effective ac-
tivation of downstream apoptosis-inducing targets, such
as caspase-2, puma, and Bax [138,139]. Again, previous
studies on antitumor effects of p53 reactivation via
reverting p53 mutations mainly focused on the non-
immunological aspects. With our better understanding
of the immunological component of anti-tumor effects
of p53 activation, these small molecules will be valuable
tools for evaluating the immunological impact of p53
reactivation in various compartments of the TME, such
as tumor or CAFs, both have been shown to incur p53
mutations independent of each other. Thus, these mole-
cules will allow us to examine whether p53 reactivation
either in tumors or stroma is sufficient to reverse p53
dysfunction-induced immunosuppression and the level
of p53 reactivation required to achieve sufficient antitu-
mor immunity to overcome tumor-induced immune
tolerance.

Combining p53-activation therapy with active
immunotherapy to improve therapeutic efficacy
Accumulating evidence suggests that monotherapy of sur-
gery, radiation, chemotherapy, or even single-pronged
immunotherapy is insufficient to achieve satisfactory
therapeutic outcome, whereas combinational ap-
proaches that not only debunk tumors, but also elicit
strong antitumor immunity during tumor debunking
improve therapeutic efficacy [96,98,111,140].
Given the documented immune stimulatory property

of radiotherapy, some chemotherapies, and the potential
immune adjuvant function of the above described phar-
malogical p53-activators, we believe that combining
these therapies with active immunotherapy will further
enhance the desired antitumor immunity. Because the
small molecule p53-activators not only re-activate, but
also reverse p53 dysfunction associated with p53 muta-
tions, they will provide the additional advantage of re-
versing p53 dysfunction-induced immune tolerance or
immunosuppression of the TME to augment antitumor
efficacy of active immunotherapy for tumors with both
wild-type and mutant p53.
Certainly, radiotherapy and some chemotherapy regi-

mens can stimulate similar levels, if not higher, of p53-
activation in tumors maintaining wild-type p53 as com-
pared with pharmacological p53-activators. An additional
immunostimulatory benefit associated with radiotherapy
and chemotherapy, but not pharmacological p53-activators,
is the transient lymphopenia in the host, which is import-
ant for adoptive T cell transferred based immunotherapy as
it enhances T cell activation and expansion [98]. Moreover,
it also has been shown that low doses of cyclophosphamide
selectively suppresses the immunoinhibitory regulatory T
cells, thereby enhancing antitumor immunity [98], which
has not been seen in p53-pharmacological activators.
Therefore, pharmacological p53-activators and radio-/

chemotherapy mediated p53-activation each has their
own unique advantages and associated drawbacks. Their
immunostimulatory potency in combination with active
immunotherapy and translational potential will not been
known until tested side-by-side. It is very likely that the
selection of one approach over another will be tumor
and case-specific, depending on the integrity of the p53
pathway and the TME. More in depth comparative stud-
ies are warranted before their broader clinical applica-
tions as an adjuvant for tumor immunotherapies.

Conclusions
Despite more than 30 years of extensive studies on p53
with more than 60,000 publications, our understanding of
the complexity of p53 pathway and its regulation in many
biological processes is far from complete. It is indisputable
that p53 suppresses tumorigenesis via the canonical path-
way of inducing apoptosis and/or senescence and the non-
canonical pathways, some of which are still emerging.
Conversely, p53 dysfunction-induced tumorigenesis is me-
diated by loss of cell cycle arrest and apoptosis, as well as
by compromising host immune surveillance and altering
tumor milieu to pro-tumor inflammation. This immune
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regulatory function of p53 is particularly exciting for tumor
immunotherapy as p53-reactivation and restoration is no
longer the sole molecular biology approach for cancer
treatment. Instead, targeting the p53 activity and pathway,
either via conventional chemotherapy and radiotherapy or
the novel pharmacological activators, will prove to be more
clinically important as they provide dual therapeutic effects
of direct p53-activation/restoration mediated tumor killing
and enhanced immune activation to promote antitumor
immunity. More importantly, they can be used in combin-
ation with other active immunotherapies to maximize ul-
timate antitumor efficacy for tumors maintaining wild-type
p53 and incurring p53 mutations. Therefore, a better un-
derstanding of how p53 activity and of specific mecha-
nisms/pathways that may ultimately revert tumor-induced
immune tolerance to heightened immune activation is clin-
ically significant for improving therapeutic outcome.
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