Information security

Lecture-9

Eng. Taghreed Harfoush

Hash Function

- Converts a variable size message M into fixed size hash code H(M) (Sometimes called a message digest)
- Can be used with encryption for authentication
 - E(M | | H)
 - $-M \mid \mid E(H)$
 - M || signed H
 - E(M | | signed H) gives confidentiality
 - M | | H(M | | S)
 - E(M | | H(M | | S))

Basic Uses of Hash Function

Figure 8.5 Basic Uses of Hash Function (page 1 of 2)

Figure 8.5 Basic Uses of Hash Function (page 2 of 2)

т

Basic Uses of Hash Function

 (a) A → B: E_K[M H(M)] •Provides confidentiality —Only A and B share K •Provides authentication —H(M) is cryptographically protected 	 (d) A → B: E_K[M E_{KRa}[H(M)]] •Provides authentication and digital signature •Provides confidentiality —Only A and B share K
(b) $A \rightarrow B: M \parallel E_{K}[H(M)]$ •Provides authentication —H(M) is cryptographically protected	 (e) A → B: M H(M S) •Provides authentication —Only A and B share S
(c) A → B: M E _{KRa} [H(M)] •Provides authentication and digital signature —H(M) is cryptographically protected —Only A could create E _{KRa} [H(M)]	 (f) A → B: E_K[M H(M) S] •Provides authentication —Only A and B share S •Provides confidentiality —Only A and B share K

5

Hash Function Requirements

- H can be applied to any size data block
- H produces fixed-length output
- H(x) is relatively easy to compute for any given x
- H is one-way, i.e., given h, it is computationally infeasible to find any x s.t. h = H(x)
- H is weakly collision resistant: given x, it is computationally infeasible to find any y ≠ x s.t. H(x) = H(y)
- H is strongly collision resistant: it is computationally infeasible to find any x and y s.t. H(x) = H(y)

Common Hash Functions

• MD5

- 128-bit output
- Designed by Ron Rivest, used very widely
- Collision-resistance broken (summer of 2004)
- RIPEMD-160
 - 160-bit variant of MD-5
- SHA-1 (Secure Hash Algorithm)
 - 160-bit output
 - US government (NIST) standard as of 1993-95
 - Also the hash algorithm for Digital Signature Standard (DSS)

Message Authentication Code

- Uses a shared secret key to generate a fixed-size block of data (known as a cryptographic checksum or MAC) that is appended to the message
- MAC = $C_{\kappa}(M)$, send M + Mac
- Assurances:
 - –Message has not been altered
 - –Message is from alleged sender
 - Message sequence is unaltered (requires internal sequencing)
- Similar to encryption but MAC algorithm needs not be reversible

Basic Uses of MAC

Basic Uses of MAC

Requirements for MAC Functions

- Assume that an opponent knows the MAC function C but does following properties
 - Given M and C_k(M), it must be computationally infeasible to construct M' s.t. C_k(M') = C_k(M)

- C_K(M) should be uniformly distributed in the sense that for any M and M', Pr[C_k(M) = C_k(M')] should be 2⁻ⁿ, where n is the length of the MAC
- Let M' be equal to some known transformation on M. That is, M' = f(M). In that case, Pr[C_k(M) = C_k(M')] = 2⁻ⁿ.

Why Use MACs?

- Plaintext stays clear
- MAC might be cheaper
- Broadcast
- Authentication of executable codes
- Separation of authentication check from message use

