Lecture-8 Eng. Taghreed Harfoush

INFORMATION SECURITY

AUTHENTICATION FUNCTIONS

- Message authentication or digital signature mechanism can be viewed as having two levels
 - + At lower level: there must be some sort of functions producing an authenticator – a value to be used to authenticate a message
 - > Message encryption
 - > Hash function
 - > Message authentication code (MAC)
 - + This lower level functions is used as primitive in a higher level authentication protocol

+ Message encryption

×Ciphertext itself serves as authenticator

+ Message authentication code (MAC)

×A public function of the message and a secret key that produces a fixed-length value that serves as the authenticator

+ Hash function

*A public function that maps a message of any length into a fixed-length hash value, which serves as the authenticator

BASIC USES OF MESSAGE ENCRYPTION

- Conventional encryption can serve as authenticator
 - + Conventional encryption provides authentication as well as confidentiality
 - + Requires recognizable plaintext or other structure to distinguish between well-formed plaintext and meaningless random bits
 - e.g., ASCII text, an appended checksum, or use of layered protocols
- **×** Public key encryption
 - + Provide Authentication via the use of private key.

WAYS OF PROVIDING STRUCTURE

* Append an error-detecting code (frame check sequence (FCS)) to each message

(a) Internal error control

(b) External error control

Confidentiality and Authentication Implications of Message Encryption

- $A \rightarrow B: E_K[M]$
 - Provides confidentiality
 - -Only A and B share K
 - Provides a degree of authentication
 - -Could come only from A
 - Has not been altered in transit
 - -Requires some formatting/redundancy
 - •Does not provide signature
 - Receiver could forge message
 - -Sender could deny message

- $A \rightarrow B: E_{KUb}[M]$
 - Provides confidentiality
 - —Only B has KRb to decrypt
 - Provides no authentication
 - -Any party could use KUb to encrypt message and claim to be A
- $A \rightarrow B: E_{KRa}[M]$
 - Provides authentication and signature
 - -Only A has KRa to encrypt
 - Has not been altered in transit
 - -Requires some formatting/redundancy
 - -Any party can use KUa to verify signature
- $A \rightarrow B: E_{KUb}[E_{KRa}(M)]$
 - Provides confidentiality because of KUb
 - Provides authentication and signature because of KR_a

