INFORMATION SECURITY

Lecture-3

Eng. Taghreed Harfoush

CRYPTOGRAPHY

- Greek kryptós (hidden) and gráphien (to write)
- **Cryptography**: The study of ways to hide information, or making it unreadable without secret knowledge

CRYPTOGRAPHY-KEYWORDS

- **Plaintext**: This is the original message or data that is fed into the algorithm as input.
- **Ciphertext**: This is the scrambled message produced as output.
- Encryption algorithm: The encryption algorithm performs various substitutions and transformations on the plaintext.
- Secret key: The secret key is also input to the encryption algorithm.
- **Decryption algorithm**: This is essentially the encryption algorithm run in reverse. It takes the ciphertext and the secret key and produces the original plaintext.

CRYPTOSYSTEM

A cryptosystem is a five-tuple (M,C,K,E,D), where the following are satisfied:

- M is a finite set of possible plaintexts over an alphabet A.
- **C** is a finite set of possible ciphertexts over B.
- □ K, the keyspace, is a finite set of possible keys
- **E** is the encryption algorithm
- **D** is the decryption algorithm

For each $e \in K$ there is a unique key $d \in K$ such that $D_d(E_e(m)) = m$

$ek: M \to C$
$dk: C \to M$
example:
$\mathbf{M} = (\mathbf{m}_{1}, \mathbf{m}_{2}, \dots, \mathbf{m}_{n}), \mathbf{C} = (\mathbf{c}_{1}, \mathbf{c}_{2}, \dots, \mathbf{c}_{n})$
<mark>E_k(m) = (m_i + k) mod 26</mark>
<mark>D_k(c) = (c_i - k) mod 26</mark>
K=3 · m="cooz",A=0,B=1,

А	B	С	D	E	F	G	Η	Ι	J	K	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

- C=((2+3 mod 26),(14+3 mod 26),(14+3 mod 26),(25+3 mod 26))
 - =Frrc

CLASSIFICATION OF ENCRYPTION SCHEME

- Symmetric-key encryption
 - The sender and the receiver use the same key $E_K(M) = C$ $D_K(C) = M$ $D_K E_K(M) = M$

• Asymmetric-key encryption – The sender and receiver use two different keys $E_e(M) = C$ $D_d(C) = M$ $D_d(E_e(M)) = M$

CRYPTANALYSIS

Recovering a plaintext from a given ciphertext without knowing the key or recovering the key.

SECURITY LEVELS

• Unconditionally Secure

 The ciphertext generated by the scheme does not contain enough information to determine uniquily the plaintext.

- Computationally Secure
 - Cost of breaking a ciphertext exceeds the value of the hidden information
 - The time taken to break the ciphertext exceeds the useful lifetime of the information

HISTORICAL (CLASSICAL) CRYPTOGRAPHY

- Two basic types
 - Substitution ciphers
 - Transposition (permutation) ciphers
- Product ciphers
 - Combinations of the two basic types

